MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 6471
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 6455 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1797 1 (℩𝑥𝜑) = (℩𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  cio 6440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-ss 3922  df-uni 4862  df-iota 6442
This theorem is referenced by:  riotav  7315  riotarab  7352  ovtpos  8181  cbvsum  15620  cbvsumv  15621  cbvprod  15838  cbvprodv  15839  prodeq1i  15841  oppgid  19253  oppr1  20253  riotaeqbii  36171  sumeq2si  36175  prodeq2si  36177  cbvprodvw2  36220  fourierdlem89  46177  fourierdlem90  46178  fourierdlem91  46179  fourierdlem96  46184  fourierdlem97  46185  fourierdlem98  46186  fourierdlem99  46187  fourierdlem100  46188  fourierdlem112  46200
  Copyright terms: Public domain W3C validator