| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 6502 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ℩cio 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 df-iota 6489 |
| This theorem is referenced by: riotav 7372 riotarab 7409 ovtpos 8245 cbvsum 15716 cbvsumv 15717 cbvprod 15934 cbvprodv 15935 prodeq1i 15937 oppgid 19344 oppr1 20315 riotaeqbii 36221 sumeq2si 36225 prodeq2si 36227 cbvprodvw2 36270 fourierdlem89 46191 fourierdlem90 46192 fourierdlem91 46193 fourierdlem96 46198 fourierdlem97 46199 fourierdlem98 46200 fourierdlem99 46201 fourierdlem100 46202 fourierdlem112 46214 |
| Copyright terms: Public domain | W3C validator |