MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 6333
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 6320 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1792 1 (℩𝑥𝜑) = (℩𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1531  cio 6305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-ext 2791
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1775  df-sb 2064  df-clab 2798  df-cleq 2812  df-clel 2891  df-rex 3142  df-uni 4831  df-iota 6307
This theorem is referenced by:  riotav  7111  ovtpos  7899  cbvsum  15044  cbvprod  15261  oppgid  18476  oppr1  19376  fourierdlem89  42471  fourierdlem90  42472  fourierdlem91  42473  fourierdlem96  42478  fourierdlem97  42479  fourierdlem98  42480  fourierdlem99  42481  fourierdlem100  42482  fourierdlem112  42494
  Copyright terms: Public domain W3C validator