MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 6528
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 6509 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1799 1 (℩𝑥𝜑) = (℩𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  cio 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-uni 4909  df-iota 6495
This theorem is referenced by:  riotav  7372  riotarab  7410  ovtpos  8228  cbvsum  15645  cbvprod  15863  oppgid  19264  oppr1  20241  fourierdlem89  45210  fourierdlem90  45211  fourierdlem91  45212  fourierdlem96  45217  fourierdlem97  45218  fourierdlem98  45219  fourierdlem99  45220  fourierdlem100  45221  fourierdlem112  45233
  Copyright terms: Public domain W3C validator