Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6311 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1804 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ℩cio 6295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-in 3850 df-ss 3860 df-uni 4797 df-iota 6297 |
This theorem is referenced by: riotav 7132 ovtpos 7936 cbvsum 15145 cbvprod 15361 oppgid 18602 oppr1 19506 riotarab 33246 fourierdlem89 43278 fourierdlem90 43279 fourierdlem91 43280 fourierdlem96 43285 fourierdlem97 43286 fourierdlem98 43287 fourierdlem99 43288 fourierdlem100 43289 fourierdlem112 43301 |
Copyright terms: Public domain | W3C validator |