![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6539 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1795 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ℩cio 6523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6525 |
This theorem is referenced by: riotav 7409 riotarab 7447 ovtpos 8282 cbvsum 15743 cbvsumv 15744 cbvprod 15961 cbvprodv 15962 prodeq1i 15964 oppgid 19399 oppr1 20376 riotaeqbii 36162 sumeq2si 36166 prodeq2si 36168 cbvprodvw2 36213 fourierdlem89 46116 fourierdlem90 46117 fourierdlem91 46118 fourierdlem96 46123 fourierdlem97 46124 fourierdlem98 46125 fourierdlem99 46126 fourierdlem100 46127 fourierdlem112 46139 |
Copyright terms: Public domain | W3C validator |