Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6390 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1801 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ℩cio 6374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-iota 6376 |
This theorem is referenced by: riotav 7217 ovtpos 8028 cbvsum 15335 cbvprod 15553 oppgid 18878 oppr1 19791 riotarab 33575 fourierdlem89 43626 fourierdlem90 43627 fourierdlem91 43628 fourierdlem96 43633 fourierdlem97 43634 fourierdlem98 43635 fourierdlem99 43636 fourierdlem100 43637 fourierdlem112 43649 |
Copyright terms: Public domain | W3C validator |