| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 6455 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-uni 4859 df-iota 6442 |
| This theorem is referenced by: riotav 7314 riotarab 7351 ovtpos 8177 cbvsum 15604 cbvsumv 15605 cbvprod 15822 cbvprodv 15823 prodeq1i 15825 oppgid 19270 oppr1 20270 riotaeqbii 36263 sumeq2si 36267 prodeq2si 36269 cbvprodvw2 36312 dfpre 38509 fourierdlem89 46317 fourierdlem90 46318 fourierdlem91 46319 fourierdlem96 46324 fourierdlem97 46325 fourierdlem98 46326 fourierdlem99 46327 fourierdlem100 46328 fourierdlem112 46340 |
| Copyright terms: Public domain | W3C validator |