MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 6558
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 6539 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1795 1 (℩𝑥𝜑) = (℩𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cio 6523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-iota 6525
This theorem is referenced by:  riotav  7409  riotarab  7447  ovtpos  8282  cbvsum  15743  cbvsumv  15744  cbvprod  15961  cbvprodv  15962  prodeq1i  15964  oppgid  19399  oppr1  20376  riotaeqbii  36162  sumeq2si  36166  prodeq2si  36168  cbvprodvw2  36213  fourierdlem89  46116  fourierdlem90  46117  fourierdlem91  46118  fourierdlem96  46123  fourierdlem97  46124  fourierdlem98  46125  fourierdlem99  46126  fourierdlem100  46127  fourierdlem112  46139
  Copyright terms: Public domain W3C validator