![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version |
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iotabi 6529 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 1, 2 | mpg 1794 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-ss 3980 df-uni 4913 df-iota 6516 |
This theorem is referenced by: riotav 7393 riotarab 7430 ovtpos 8265 cbvsum 15728 cbvsumv 15729 cbvprod 15946 cbvprodv 15947 prodeq1i 15949 oppgid 19390 oppr1 20367 riotaeqbii 36180 sumeq2si 36184 prodeq2si 36186 cbvprodvw2 36230 fourierdlem89 46151 fourierdlem90 46152 fourierdlem91 46153 fourierdlem96 46158 fourierdlem97 46159 fourierdlem98 46160 fourierdlem99 46161 fourierdlem100 46162 fourierdlem112 46174 |
Copyright terms: Public domain | W3C validator |