MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iotabii Structured version   Visualization version   GIF version

Theorem iotabii 6403
Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
iotabii.1 (𝜑𝜓)
Assertion
Ref Expression
iotabii (℩𝑥𝜑) = (℩𝑥𝜓)

Proof of Theorem iotabii
StepHypRef Expression
1 iotabi 6390 . 2 (∀𝑥(𝜑𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓))
2 iotabii.1 . 2 (𝜑𝜓)
31, 2mpg 1801 1 (℩𝑥𝜑) = (℩𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cio 6374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-iota 6376
This theorem is referenced by:  riotav  7217  ovtpos  8028  cbvsum  15335  cbvprod  15553  oppgid  18878  oppr1  19791  riotarab  33575  fourierdlem89  43626  fourierdlem90  43627  fourierdlem91  43628  fourierdlem96  43633  fourierdlem97  43634  fourierdlem98  43635  fourierdlem99  43636  fourierdlem100  43637  fourierdlem112  43649
  Copyright terms: Public domain W3C validator