| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 6477 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ℩cio 6462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-iota 6464 |
| This theorem is referenced by: riotav 7349 riotarab 7386 ovtpos 8220 cbvsum 15661 cbvsumv 15662 cbvprod 15879 cbvprodv 15880 prodeq1i 15882 oppgid 19288 oppr1 20259 riotaeqbii 36186 sumeq2si 36190 prodeq2si 36192 cbvprodvw2 36235 fourierdlem89 46193 fourierdlem90 46194 fourierdlem91 46195 fourierdlem96 46200 fourierdlem97 46201 fourierdlem98 46202 fourierdlem99 46203 fourierdlem100 46204 fourierdlem112 46216 |
| Copyright terms: Public domain | W3C validator |