| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 6455 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1797 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ℩cio 6440 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 df-iota 6442 |
| This theorem is referenced by: riotav 7315 riotarab 7352 ovtpos 8181 cbvsum 15620 cbvsumv 15621 cbvprod 15838 cbvprodv 15839 prodeq1i 15841 oppgid 19253 oppr1 20253 riotaeqbii 36171 sumeq2si 36175 prodeq2si 36177 cbvprodvw2 36220 fourierdlem89 46177 fourierdlem90 46178 fourierdlem91 46179 fourierdlem96 46184 fourierdlem97 46185 fourierdlem98 46186 fourierdlem99 46187 fourierdlem100 46188 fourierdlem112 46200 |
| Copyright terms: Public domain | W3C validator |