| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iotabii | Structured version Visualization version GIF version | ||
| Description: Formula-building deduction for iota. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| iotabii.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| iotabii | ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iotabi 6450 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (℩𝑥𝜑) = (℩𝑥𝜓)) | |
| 2 | iotabii.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 1, 2 | mpg 1798 | 1 ⊢ (℩𝑥𝜑) = (℩𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ℩cio 6435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-uni 4860 df-iota 6437 |
| This theorem is referenced by: riotav 7308 riotarab 7345 ovtpos 8171 cbvsum 15599 cbvsumv 15600 cbvprod 15817 cbvprodv 15818 prodeq1i 15820 oppgid 19266 oppr1 20266 riotaeqbii 36231 sumeq2si 36235 prodeq2si 36237 cbvprodvw2 36280 fourierdlem89 46232 fourierdlem90 46233 fourierdlem91 46234 fourierdlem96 46239 fourierdlem97 46240 fourierdlem98 46241 fourierdlem99 46242 fourierdlem100 46243 fourierdlem112 46255 |
| Copyright terms: Public domain | W3C validator |