Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotav | Structured version Visualization version GIF version |
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
Ref | Expression |
---|---|
riotav | ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7114 | . 2 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 3413 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 534 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | iotabii 6325 | . 2 ⊢ (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | eqtr4i 2784 | 1 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ℩cio 6297 ℩crio 7113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-ss 3877 df-uni 4802 df-iota 6299 df-riota 7114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |