MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotav Structured version   Visualization version   GIF version

Theorem riotav 7409
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 7404 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3492 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 6558 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2771 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cio 6523  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator