MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotav Structured version   Visualization version   GIF version

Theorem riotav 7381
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 7376 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3475 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 6533 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2759 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  cio 6498  crio 7375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964  df-uni 4909  df-iota 6500  df-riota 7376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator