MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotauni Structured version   Visualization version   GIF version

Theorem riotauni 7371
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
Assertion
Ref Expression
riotauni (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})

Proof of Theorem riotauni
StepHypRef Expression
1 df-reu 3378 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotauni 6519 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 216 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 7365 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3434 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65unieqi 4922 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
73, 4, 63eqtr4g 2798 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  ∃!weu 2563  {cab 2710  ∃!wreu 3375  {crab 3433   cuni 4909  cio 6494  crio 7364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-reu 3378  df-rab 3434  df-v 3477  df-un 3954  df-in 3956  df-ss 3966  df-sn 4630  df-pr 4632  df-uni 4910  df-iota 6496  df-riota 7365
This theorem is referenced by:  riotassuni  7406  supval2  9450  dfac2a  10124
  Copyright terms: Public domain W3C validator