MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotauni Structured version   Visualization version   GIF version

Theorem riotauni 7410
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
Assertion
Ref Expression
riotauni (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})

Proof of Theorem riotauni
StepHypRef Expression
1 df-reu 3389 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotauni 6548 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 7404 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3444 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65unieqi 4943 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
73, 4, 63eqtr4g 2805 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  {cab 2717  ∃!wreu 3386  {crab 3443   cuni 4931  cio 6523  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-reu 3389  df-rab 3444  df-v 3490  df-un 3981  df-ss 3993  df-sn 4649  df-pr 4651  df-uni 4932  df-iota 6525  df-riota 7404
This theorem is referenced by:  riotassuni  7445  supval2  9524  dfac2a  10199
  Copyright terms: Public domain W3C validator