MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotauni Structured version   Visualization version   GIF version

Theorem riotauni 7353
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
Assertion
Ref Expression
riotauni (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})

Proof of Theorem riotauni
StepHypRef Expression
1 df-reu 3357 . . 3 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
2 iotauni 6489 . . 3 (∃!𝑥(𝑥𝐴𝜑) → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
31, 2sylbi 217 . 2 (∃!𝑥𝐴 𝜑 → (℩𝑥(𝑥𝐴𝜑)) = {𝑥 ∣ (𝑥𝐴𝜑)})
4 df-riota 7347 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
5 df-rab 3409 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
65unieqi 4886 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
73, 4, 63eqtr4g 2790 1 (∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!weu 2562  {cab 2708  ∃!wreu 3354  {crab 3408   cuni 4874  cio 6465  crio 7346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-reu 3357  df-rab 3409  df-v 3452  df-un 3922  df-ss 3934  df-sn 4593  df-pr 4595  df-uni 4875  df-iota 6467  df-riota 7347
This theorem is referenced by:  riotassuni  7387  supval2  9413  dfac2a  10090
  Copyright terms: Public domain W3C validator