![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotauni | Structured version Visualization version GIF version |
Description: Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.) |
Ref | Expression |
---|---|
riotauni | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-reu 3378 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | iotauni 6519 | . . 3 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
4 | df-riota 7365 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | df-rab 3434 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
6 | 5 | unieqi 4922 | . 2 ⊢ ∪ {𝑥 ∈ 𝐴 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
7 | 3, 4, 6 | 3eqtr4g 2798 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 → (℩𝑥 ∈ 𝐴 𝜑) = ∪ {𝑥 ∈ 𝐴 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 {cab 2710 ∃!wreu 3375 {crab 3433 ∪ cuni 4909 ℩cio 6494 ℩crio 7364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-reu 3378 df-rab 3434 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 df-sn 4630 df-pr 4632 df-uni 4910 df-iota 6496 df-riota 7365 |
This theorem is referenced by: riotassuni 7406 supval2 9450 dfac2a 10124 |
Copyright terms: Public domain | W3C validator |