| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7326 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6472 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ℩cio 6450 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: ordtypelem3 9449 dfac8clem 9963 zorn2lem1 10427 subval 11390 1div0 11815 1div0OLD 11816 divval 11817 elq 12887 flval 13734 ceilval2 13780 cjval 15045 sqrtval 15180 sqrtf 15307 cidval 17619 cidfn 17621 lubdm 18291 lubval 18296 glbdm 18304 glbval 18309 grpinvfval 18893 grpinvval 18895 grpinvfn 18896 pj1val 19610 evlsval 22027 q1pval 26094 ig1pval 26115 coeval 26162 quotval 26234 scutval 27747 dmscut 27758 divsval 28133 mirfv 28637 mirf 28641 usgredg2v 29208 frgrncvvdeqlem5 30283 1div0apr 30448 gidval 30492 grpoinvval 30503 grpoinvf 30512 pjhval 31377 pjfni 31681 cnlnadjlem5 32051 nmopadjlei 32068 cdj3lem2 32415 xdivval 32890 cvmlift3lem4 35303 fvtransport 36014 weiunlem2 36445 finxpreclem4 37376 poimirlem26 37634 lshpkrlem1 39097 lshpkrlem2 39098 lshpkrlem3 39099 trlval 40150 cdleme31fv 40378 cdleme50f 40530 cdlemksv 40832 cdlemkuu 40883 cdlemk40 40905 cdlemk56 40959 cdlemm10N 41106 cdlemn11a 41195 dihval 41220 dihf11lem 41254 dihatlat 41322 dochfl1 41464 mapdhval 41712 hvmapvalvalN 41749 hdmap1vallem 41785 hdmapval 41816 hdmapfnN 41817 hgmapval 41875 hgmapfnN 41876 resubval 42349 redivvald 42424 mpaaval 43134 wessf1ornlem 45173 |
| Copyright terms: Public domain | W3C validator |