Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version |
Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7212 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | iotaex 6398 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ℩cio 6374 ℩crio 7211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-iota 6376 df-riota 7212 |
This theorem is referenced by: ordtypelem3 9209 dfac8clem 9719 zorn2lem1 10183 subval 11142 1div0 11564 divval 11565 elq 12619 flval 13442 ceilval2 13488 cjval 14741 sqrtval 14876 sqrtf 15003 cidval 17303 cidfn 17305 lubdm 17984 lubval 17989 glbdm 17997 glbval 18002 grpinvfval 18533 grpinvval 18535 grpinvfn 18536 pj1val 19216 evlsval 21206 q1pval 25223 ig1pval 25242 coeval 25289 quotval 25357 mirfv 26921 mirf 26925 usgredg2v 27497 frgrncvvdeqlem5 28568 1div0apr 28733 gidval 28775 grpoinvval 28786 grpoinvf 28795 pjhval 29660 pjfni 29964 cnlnadjlem5 30334 nmopadjlei 30351 cdj3lem2 30698 xdivval 31095 cvmlift3lem4 33184 scutval 33921 dmscut 33932 fvtransport 34261 finxpreclem4 35492 poimirlem26 35730 lshpkrlem1 37051 lshpkrlem2 37052 lshpkrlem3 37053 trlval 38103 cdleme31fv 38331 cdleme50f 38483 cdlemksv 38785 cdlemkuu 38836 cdlemk40 38858 cdlemk56 38912 cdlemm10N 39059 cdlemn11a 39148 dihval 39173 dihf11lem 39207 dihatlat 39275 dochfl1 39417 mapdhval 39665 hvmapvalvalN 39702 hdmap1vallem 39738 hdmapval 39769 hdmapfnN 39770 hgmapval 39828 hgmapfnN 39829 resubval 40271 mpaaval 40892 wessf1ornlem 42611 |
Copyright terms: Public domain | W3C validator |