| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7326 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6472 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ℩cio 6450 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: ordtypelem3 9449 dfac8clem 9961 zorn2lem1 10425 subval 11388 1div0 11813 1div0OLD 11814 divval 11815 elq 12885 flval 13732 ceilval2 13778 cjval 15044 sqrtval 15179 sqrtf 15306 cidval 17618 cidfn 17620 lubdm 18290 lubval 18295 glbdm 18303 glbval 18308 grpinvfval 18892 grpinvval 18894 grpinvfn 18895 pj1val 19609 evlsval 22026 q1pval 26093 ig1pval 26114 coeval 26161 quotval 26233 scutval 27746 dmscut 27757 divsval 28132 mirfv 28636 mirf 28640 usgredg2v 29207 frgrncvvdeqlem5 30282 1div0apr 30447 gidval 30491 grpoinvval 30502 grpoinvf 30511 pjhval 31376 pjfni 31680 cnlnadjlem5 32050 nmopadjlei 32067 cdj3lem2 32414 xdivval 32889 cvmlift3lem4 35302 fvtransport 36013 weiunlem2 36444 finxpreclem4 37375 poimirlem26 37633 lshpkrlem1 39096 lshpkrlem2 39097 lshpkrlem3 39098 trlval 40149 cdleme31fv 40377 cdleme50f 40529 cdlemksv 40831 cdlemkuu 40882 cdlemk40 40904 cdlemk56 40958 cdlemm10N 41105 cdlemn11a 41194 dihval 41219 dihf11lem 41253 dihatlat 41321 dochfl1 41463 mapdhval 41711 hvmapvalvalN 41748 hdmap1vallem 41784 hdmapval 41815 hdmapfnN 41816 hgmapval 41874 hgmapfnN 41875 resubval 42348 redivvald 42423 mpaaval 43133 wessf1ornlem 45172 |
| Copyright terms: Public domain | W3C validator |