![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version |
Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7388 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | iotaex 6536 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
3 | 1, 2 | eqeltri 2835 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2106 Vcvv 3478 ℩cio 6514 ℩crio 7387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4913 df-iota 6516 df-riota 7388 |
This theorem is referenced by: ordtypelem3 9558 dfac8clem 10070 zorn2lem1 10534 subval 11497 1div0 11920 1div0OLD 11921 divval 11922 elq 12990 flval 13831 ceilval2 13877 cjval 15138 sqrtval 15273 sqrtf 15399 cidval 17722 cidfn 17724 lubdm 18409 lubval 18414 glbdm 18422 glbval 18427 grpinvfval 19009 grpinvval 19011 grpinvfn 19012 pj1val 19728 evlsval 22128 q1pval 26209 ig1pval 26230 coeval 26277 quotval 26349 scutval 27860 dmscut 27871 divsval 28230 mirfv 28679 mirf 28683 usgredg2v 29259 frgrncvvdeqlem5 30332 1div0apr 30497 gidval 30541 grpoinvval 30552 grpoinvf 30561 pjhval 31426 pjfni 31730 cnlnadjlem5 32100 nmopadjlei 32117 cdj3lem2 32464 xdivval 32886 cvmlift3lem4 35307 fvtransport 36014 weiunlem2 36446 finxpreclem4 37377 poimirlem26 37633 lshpkrlem1 39092 lshpkrlem2 39093 lshpkrlem3 39094 trlval 40145 cdleme31fv 40373 cdleme50f 40525 cdlemksv 40827 cdlemkuu 40878 cdlemk40 40900 cdlemk56 40954 cdlemm10N 41101 cdlemn11a 41190 dihval 41215 dihf11lem 41249 dihatlat 41317 dochfl1 41459 mapdhval 41707 hvmapvalvalN 41744 hdmap1vallem 41780 hdmapval 41811 hdmapfnN 41812 hgmapval 41870 hgmapfnN 41871 resubval 42374 mpaaval 43140 wessf1ornlem 45128 |
Copyright terms: Public domain | W3C validator |