|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-riota 7389 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6533 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2836 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∧ wa 395 ∈ wcel 2107 Vcvv 3479 ℩cio 6511 ℩crio 7388 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-sn 4626 df-pr 4628 df-uni 4907 df-iota 6513 df-riota 7389 | 
| This theorem is referenced by: ordtypelem3 9561 dfac8clem 10073 zorn2lem1 10537 subval 11500 1div0 11923 1div0OLD 11924 divval 11925 elq 12993 flval 13835 ceilval2 13881 cjval 15142 sqrtval 15277 sqrtf 15403 cidval 17721 cidfn 17723 lubdm 18397 lubval 18402 glbdm 18410 glbval 18415 grpinvfval 18997 grpinvval 18999 grpinvfn 19000 pj1val 19714 evlsval 22111 q1pval 26195 ig1pval 26216 coeval 26263 quotval 26335 scutval 27846 dmscut 27857 divsval 28216 mirfv 28665 mirf 28669 usgredg2v 29245 frgrncvvdeqlem5 30323 1div0apr 30488 gidval 30532 grpoinvval 30543 grpoinvf 30552 pjhval 31417 pjfni 31721 cnlnadjlem5 32091 nmopadjlei 32108 cdj3lem2 32455 xdivval 32902 cvmlift3lem4 35328 fvtransport 36034 weiunlem2 36465 finxpreclem4 37396 poimirlem26 37654 lshpkrlem1 39112 lshpkrlem2 39113 lshpkrlem3 39114 trlval 40165 cdleme31fv 40393 cdleme50f 40545 cdlemksv 40847 cdlemkuu 40898 cdlemk40 40920 cdlemk56 40974 cdlemm10N 41121 cdlemn11a 41210 dihval 41235 dihf11lem 41269 dihatlat 41337 dochfl1 41479 mapdhval 41727 hvmapvalvalN 41764 hdmap1vallem 41800 hdmapval 41831 hdmapfnN 41832 hgmapval 41890 hgmapfnN 41891 resubval 42402 mpaaval 43168 wessf1ornlem 45195 | 
| Copyright terms: Public domain | W3C validator |