| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7303 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6457 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2827 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2111 Vcvv 3436 ℩cio 6435 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: ordtypelem3 9406 dfac8clem 9923 zorn2lem1 10387 subval 11351 1div0 11776 1div0OLD 11777 divval 11778 elq 12848 flval 13698 ceilval2 13744 cjval 15009 sqrtval 15144 sqrtf 15271 cidval 17583 cidfn 17585 lubdm 18255 lubval 18260 glbdm 18268 glbval 18273 grpinvfval 18891 grpinvval 18893 grpinvfn 18894 pj1val 19607 evlsval 22021 q1pval 26087 ig1pval 26108 coeval 26155 quotval 26227 scutval 27741 dmscut 27752 divsval 28128 mirfv 28634 mirf 28638 usgredg2v 29205 frgrncvvdeqlem5 30283 1div0apr 30448 gidval 30492 grpoinvval 30503 grpoinvf 30512 pjhval 31377 pjfni 31681 cnlnadjlem5 32051 nmopadjlei 32068 cdj3lem2 32415 xdivval 32899 cvmlift3lem4 35366 fvtransport 36076 weiunlem2 36507 finxpreclem4 37438 poimirlem26 37685 lshpkrlem1 39208 lshpkrlem2 39209 lshpkrlem3 39210 trlval 40260 cdleme31fv 40488 cdleme50f 40640 cdlemksv 40942 cdlemkuu 40993 cdlemk40 41015 cdlemk56 41069 cdlemm10N 41216 cdlemn11a 41305 dihval 41330 dihf11lem 41364 dihatlat 41432 dochfl1 41574 mapdhval 41822 hvmapvalvalN 41859 hdmap1vallem 41895 hdmapval 41926 hdmapfnN 41927 hgmapval 41985 hgmapfnN 41986 resubval 42459 redivvald 42534 mpaaval 43243 wessf1ornlem 45281 |
| Copyright terms: Public domain | W3C validator |