| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7356 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6500 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2829 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2107 Vcvv 3457 ℩cio 6478 ℩crio 7355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-nul 5273 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-v 3459 df-dif 3927 df-un 3929 df-ss 3941 df-nul 4307 df-sn 4600 df-pr 4602 df-uni 4881 df-iota 6480 df-riota 7356 |
| This theorem is referenced by: ordtypelem3 9526 dfac8clem 10038 zorn2lem1 10502 subval 11465 1div0 11888 1div0OLD 11889 divval 11890 elq 12958 flval 13800 ceilval2 13846 cjval 15108 sqrtval 15243 sqrtf 15369 cidval 17674 cidfn 17676 lubdm 18346 lubval 18351 glbdm 18359 glbval 18364 grpinvfval 18946 grpinvval 18948 grpinvfn 18949 pj1val 19661 evlsval 22029 q1pval 26097 ig1pval 26118 coeval 26165 quotval 26237 scutval 27748 dmscut 27759 divsval 28118 mirfv 28567 mirf 28571 usgredg2v 29138 frgrncvvdeqlem5 30216 1div0apr 30381 gidval 30425 grpoinvval 30436 grpoinvf 30445 pjhval 31310 pjfni 31614 cnlnadjlem5 31984 nmopadjlei 32001 cdj3lem2 32348 xdivval 32811 cvmlift3lem4 35265 fvtransport 35971 weiunlem2 36402 finxpreclem4 37333 poimirlem26 37591 lshpkrlem1 39049 lshpkrlem2 39050 lshpkrlem3 39051 trlval 40102 cdleme31fv 40330 cdleme50f 40482 cdlemksv 40784 cdlemkuu 40835 cdlemk40 40857 cdlemk56 40911 cdlemm10N 41058 cdlemn11a 41147 dihval 41172 dihf11lem 41206 dihatlat 41274 dochfl1 41416 mapdhval 41664 hvmapvalvalN 41701 hdmap1vallem 41737 hdmapval 41768 hdmapfnN 41769 hgmapval 41827 hgmapfnN 41828 resubval 42335 mpaaval 43100 wessf1ornlem 45136 |
| Copyright terms: Public domain | W3C validator |