![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version |
Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
Ref | Expression |
---|---|
riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-riota 7404 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
2 | iotaex 6546 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
3 | 1, 2 | eqeltri 2840 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ℩cio 6523 ℩crio 7403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6525 df-riota 7404 |
This theorem is referenced by: ordtypelem3 9589 dfac8clem 10101 zorn2lem1 10565 subval 11527 1div0 11949 1div0OLD 11950 divval 11951 elq 13015 flval 13845 ceilval2 13891 cjval 15151 sqrtval 15286 sqrtf 15412 cidval 17735 cidfn 17737 lubdm 18421 lubval 18426 glbdm 18434 glbval 18439 grpinvfval 19018 grpinvval 19020 grpinvfn 19021 pj1val 19737 evlsval 22133 q1pval 26214 ig1pval 26235 coeval 26282 quotval 26352 scutval 27863 dmscut 27874 divsval 28233 mirfv 28682 mirf 28686 usgredg2v 29262 frgrncvvdeqlem5 30335 1div0apr 30500 gidval 30544 grpoinvval 30555 grpoinvf 30564 pjhval 31429 pjfni 31733 cnlnadjlem5 32103 nmopadjlei 32120 cdj3lem2 32467 xdivval 32883 cvmlift3lem4 35290 fvtransport 35996 weiunlem2 36429 finxpreclem4 37360 poimirlem26 37606 lshpkrlem1 39066 lshpkrlem2 39067 lshpkrlem3 39068 trlval 40119 cdleme31fv 40347 cdleme50f 40499 cdlemksv 40801 cdlemkuu 40852 cdlemk40 40874 cdlemk56 40928 cdlemm10N 41075 cdlemn11a 41164 dihval 41189 dihf11lem 41223 dihatlat 41291 dochfl1 41433 mapdhval 41681 hvmapvalvalN 41718 hdmap1vallem 41754 hdmapval 41785 hdmapfnN 41786 hgmapval 41844 hgmapfnN 41845 resubval 42343 mpaaval 43108 wessf1ornlem 45092 |
Copyright terms: Public domain | W3C validator |