| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7344 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6484 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ℩cio 6462 ℩crio 7343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-iota 6464 df-riota 7344 |
| This theorem is referenced by: ordtypelem3 9473 dfac8clem 9985 zorn2lem1 10449 subval 11412 1div0 11837 1div0OLD 11838 divval 11839 elq 12909 flval 13756 ceilval2 13802 cjval 15068 sqrtval 15203 sqrtf 15330 cidval 17638 cidfn 17640 lubdm 18310 lubval 18315 glbdm 18323 glbval 18328 grpinvfval 18910 grpinvval 18912 grpinvfn 18913 pj1val 19625 evlsval 21993 q1pval 26060 ig1pval 26081 coeval 26128 quotval 26200 scutval 27712 dmscut 27723 divsval 28092 mirfv 28583 mirf 28587 usgredg2v 29154 frgrncvvdeqlem5 30232 1div0apr 30397 gidval 30441 grpoinvval 30452 grpoinvf 30461 pjhval 31326 pjfni 31630 cnlnadjlem5 32000 nmopadjlei 32017 cdj3lem2 32364 xdivval 32839 cvmlift3lem4 35309 fvtransport 36020 weiunlem2 36451 finxpreclem4 37382 poimirlem26 37640 lshpkrlem1 39103 lshpkrlem2 39104 lshpkrlem3 39105 trlval 40156 cdleme31fv 40384 cdleme50f 40536 cdlemksv 40838 cdlemkuu 40889 cdlemk40 40911 cdlemk56 40965 cdlemm10N 41112 cdlemn11a 41201 dihval 41226 dihf11lem 41260 dihatlat 41328 dochfl1 41470 mapdhval 41718 hvmapvalvalN 41755 hdmap1vallem 41791 hdmapval 41822 hdmapfnN 41823 hgmapval 41881 hgmapfnN 41882 resubval 42355 redivvald 42430 mpaaval 43140 wessf1ornlem 45179 |
| Copyright terms: Public domain | W3C validator |