| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7306 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6458 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2824 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3436 ℩cio 6436 ℩crio 7305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5245 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-sn 4578 df-pr 4580 df-uni 4859 df-iota 6438 df-riota 7306 |
| This theorem is referenced by: ordtypelem3 9412 dfac8clem 9926 zorn2lem1 10390 subval 11354 1div0 11779 1div0OLD 11780 divval 11781 elq 12851 flval 13698 ceilval2 13744 cjval 15009 sqrtval 15144 sqrtf 15271 cidval 17583 cidfn 17585 lubdm 18255 lubval 18260 glbdm 18268 glbval 18273 grpinvfval 18857 grpinvval 18859 grpinvfn 18860 pj1val 19574 evlsval 21991 q1pval 26058 ig1pval 26079 coeval 26126 quotval 26198 scutval 27712 dmscut 27723 divsval 28099 mirfv 28605 mirf 28609 usgredg2v 29176 frgrncvvdeqlem5 30251 1div0apr 30416 gidval 30460 grpoinvval 30471 grpoinvf 30480 pjhval 31345 pjfni 31649 cnlnadjlem5 32019 nmopadjlei 32036 cdj3lem2 32383 xdivval 32868 cvmlift3lem4 35315 fvtransport 36026 weiunlem2 36457 finxpreclem4 37388 poimirlem26 37646 lshpkrlem1 39109 lshpkrlem2 39110 lshpkrlem3 39111 trlval 40161 cdleme31fv 40389 cdleme50f 40541 cdlemksv 40843 cdlemkuu 40894 cdlemk40 40916 cdlemk56 40970 cdlemm10N 41117 cdlemn11a 41206 dihval 41231 dihf11lem 41265 dihatlat 41333 dochfl1 41475 mapdhval 41723 hvmapvalvalN 41760 hdmap1vallem 41796 hdmapval 41827 hdmapfnN 41828 hgmapval 41886 hgmapfnN 41887 resubval 42360 redivvald 42435 mpaaval 43144 wessf1ornlem 45183 |
| Copyright terms: Public domain | W3C validator |