| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotaex | Structured version Visualization version GIF version | ||
| Description: Restricted iota is a set. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotaex | ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 7367 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜓) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | iotaex 6509 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) ∈ V | |
| 3 | 1, 2 | eqeltri 2831 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜓) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Vcvv 3464 ℩cio 6487 ℩crio 7366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-sn 4607 df-pr 4609 df-uni 4889 df-iota 6489 df-riota 7367 |
| This theorem is referenced by: ordtypelem3 9539 dfac8clem 10051 zorn2lem1 10515 subval 11478 1div0 11901 1div0OLD 11902 divval 11903 elq 12971 flval 13816 ceilval2 13862 cjval 15126 sqrtval 15261 sqrtf 15387 cidval 17694 cidfn 17696 lubdm 18366 lubval 18371 glbdm 18379 glbval 18384 grpinvfval 18966 grpinvval 18968 grpinvfn 18969 pj1val 19681 evlsval 22049 q1pval 26117 ig1pval 26138 coeval 26185 quotval 26257 scutval 27769 dmscut 27780 divsval 28149 mirfv 28640 mirf 28644 usgredg2v 29211 frgrncvvdeqlem5 30289 1div0apr 30454 gidval 30498 grpoinvval 30509 grpoinvf 30518 pjhval 31383 pjfni 31687 cnlnadjlem5 32057 nmopadjlei 32074 cdj3lem2 32421 xdivval 32898 cvmlift3lem4 35349 fvtransport 36055 weiunlem2 36486 finxpreclem4 37417 poimirlem26 37675 lshpkrlem1 39133 lshpkrlem2 39134 lshpkrlem3 39135 trlval 40186 cdleme31fv 40414 cdleme50f 40566 cdlemksv 40868 cdlemkuu 40919 cdlemk40 40941 cdlemk56 40995 cdlemm10N 41142 cdlemn11a 41231 dihval 41256 dihf11lem 41290 dihatlat 41358 dochfl1 41500 mapdhval 41748 hvmapvalvalN 41785 hdmap1vallem 41821 hdmapval 41852 hdmapfnN 41853 hgmapval 41911 hgmapfnN 41912 resubval 42377 mpaaval 43142 wessf1ornlem 45176 |
| Copyright terms: Public domain | W3C validator |