MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmosn Structured version   Visualization version   GIF version

Theorem rmosn 4718
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
rmosn ∃*𝑥 ∈ {𝐴}𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmosn
StepHypRef Expression
1 idd 24 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 nfsbc1v 3807 . . . . 5 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 3798 . . . . 5 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
42, 3rexsngf 4671 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
52, 3reusngf 4673 . . . 4 (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
61, 4, 53imtr4d 294 . . 3 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
7 rmo5 3399 . . 3 (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
86, 7sylibr 234 . 2 (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
9 rmo0 4361 . . 3 ∃*𝑥 ∈ ∅ 𝜑
10 snprc 4716 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
11 rmoeq1 3415 . . . 4 ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
1210, 11sylbi 217 . . 3 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
139, 12mpbiri 258 . 2 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
148, 13pm2.61i 182 1 ∃*𝑥 ∈ {𝐴}𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2107  wrex 3069  ∃!wreu 3377  ∃*wrmo 3378  Vcvv 3479  [wsbc 3787  c0 4332  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-v 3481  df-sbc 3788  df-dif 3953  df-nul 4333  df-sn 4626
This theorem is referenced by:  mosn  48737
  Copyright terms: Public domain W3C validator