![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmosn | Structured version Visualization version GIF version |
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
rmosn | ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
2 | nfsbc1v 3824 | . . . . 5 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | |
3 | sbceq1a 3815 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | rexsngf 4694 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
5 | 2, 3 | reusngf 4696 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
6 | 1, 4, 5 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) |
7 | rmo5 3408 | . . 3 ⊢ (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) | |
8 | 6, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
9 | rmo0 4385 | . . 3 ⊢ ∃*𝑥 ∈ ∅ 𝜑 | |
10 | snprc 4742 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | rmoeq1 3425 | . . . 4 ⊢ ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) | |
12 | 10, 11 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) |
13 | 9, 12 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
14 | 8, 13 | pm2.61i 182 | 1 ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ∃!wreu 3386 ∃*wrmo 3387 Vcvv 3488 [wsbc 3804 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-v 3490 df-sbc 3805 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: mosn 48544 |
Copyright terms: Public domain | W3C validator |