| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmosn | Structured version Visualization version GIF version | ||
| Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.) |
| Ref | Expression |
|---|---|
| rmosn | ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idd 24 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
| 2 | nfsbc1v 3756 | . . . . 5 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | |
| 3 | sbceq1a 3747 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 4 | 2, 3 | rexsngf 4620 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 5 | 2, 3 | reusngf 4622 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 6 | 1, 4, 5 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) |
| 7 | rmo5 3364 | . . 3 ⊢ (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) | |
| 8 | 6, 7 | sylibr 234 | . 2 ⊢ (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
| 9 | rmo0 4307 | . . 3 ⊢ ∃*𝑥 ∈ ∅ 𝜑 | |
| 10 | snprc 4665 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 11 | rmoeq1 3377 | . . . 4 ⊢ ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) | |
| 12 | 10, 11 | sylbi 217 | . . 3 ⊢ (¬ 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) |
| 13 | 9, 12 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
| 14 | 8, 13 | pm2.61i 182 | 1 ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∃!wreu 3344 ∃*wrmo 3345 Vcvv 3436 [wsbc 3736 ∅c0 4278 {csn 4571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-v 3438 df-sbc 3737 df-dif 3900 df-nul 4279 df-sn 4572 |
| This theorem is referenced by: mosn 48844 |
| Copyright terms: Public domain | W3C validator |