MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmosn Structured version   Visualization version   GIF version

Theorem rmosn 4658
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
rmosn ∃*𝑥 ∈ {𝐴}𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmosn
StepHypRef Expression
1 idd 24 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 nfsbc1v 3738 . . . . 5 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 3729 . . . . 5 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
42, 3rexsngf 4609 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
52, 3reusngf 4611 . . . 4 (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
61, 4, 53imtr4d 293 . . 3 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
7 rmo5 3367 . . 3 (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
86, 7sylibr 233 . 2 (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
9 rmo0 4296 . . 3 ∃*𝑥 ∈ ∅ 𝜑
10 snprc 4656 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
11 rmoeq1 3347 . . . 4 ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
1210, 11sylbi 216 . . 3 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
139, 12mpbiri 257 . 2 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
148, 13pm2.61i 182 1 ∃*𝑥 ∈ {𝐴}𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1537  wcel 2101  wrex 3068  ∃!wreu 3219  ∃*wrmo 3220  Vcvv 3434  [wsbc 3718  c0 4259  {csn 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-v 3436  df-sbc 3719  df-dif 3892  df-nul 4260  df-sn 4565
This theorem is referenced by:  mosn  46198
  Copyright terms: Public domain W3C validator