Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rmosn | Structured version Visualization version GIF version |
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
rmosn | ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
2 | nfsbc1v 3718 | . . . . 5 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | |
3 | sbceq1a 3709 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | rexsngf 4570 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
5 | 2, 3 | reusngf 4572 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
6 | 1, 4, 5 | 3imtr4d 297 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) |
7 | rmo5 3344 | . . 3 ⊢ (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) | |
8 | 6, 7 | sylibr 237 | . 2 ⊢ (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
9 | rmo0 4260 | . . 3 ⊢ ∃*𝑥 ∈ ∅ 𝜑 | |
10 | snprc 4613 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | rmoeq1 3326 | . . . 4 ⊢ ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) | |
12 | 10, 11 | sylbi 220 | . . 3 ⊢ (¬ 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) |
13 | 9, 12 | mpbiri 261 | . 2 ⊢ (¬ 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
14 | 8, 13 | pm2.61i 185 | 1 ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ∃!wreu 3072 ∃*wrmo 3073 Vcvv 3409 [wsbc 3698 ∅c0 4227 {csn 4525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-v 3411 df-sbc 3699 df-dif 3863 df-nul 4228 df-sn 4526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |