![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmosn | Structured version Visualization version GIF version |
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.) |
Ref | Expression |
---|---|
rmosn | ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . . . 4 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | |
2 | nfsbc1v 3789 | . . . . 5 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 | |
3 | sbceq1a 3780 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
4 | 2, 3 | rexsngf 4666 | . . . 4 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
5 | 2, 3 | reusngf 4668 | . . . 4 ⊢ (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
6 | 1, 4, 5 | 3imtr4d 294 | . . 3 ⊢ (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) |
7 | rmo5 3388 | . . 3 ⊢ (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑)) | |
8 | 6, 7 | sylibr 233 | . 2 ⊢ (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
9 | rmo0 4351 | . . 3 ⊢ ∃*𝑥 ∈ ∅ 𝜑 | |
10 | snprc 4713 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
11 | rmoeq1 3406 | . . . 4 ⊢ ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) | |
12 | 10, 11 | sylbi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑)) |
13 | 9, 12 | mpbiri 258 | . 2 ⊢ (¬ 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑) |
14 | 8, 13 | pm2.61i 182 | 1 ⊢ ∃*𝑥 ∈ {𝐴}𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ∃wrex 3062 ∃!wreu 3366 ∃*wrmo 3367 Vcvv 3466 [wsbc 3769 ∅c0 4314 {csn 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-v 3468 df-sbc 3770 df-dif 3943 df-nul 4315 df-sn 4621 |
This theorem is referenced by: mosn 47685 |
Copyright terms: Public domain | W3C validator |