MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmosn Structured version   Visualization version   GIF version

Theorem rmosn 4657
Description: A restricted at-most-one quantifier over a singleton is always true. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
rmosn ∃*𝑥 ∈ {𝐴}𝜑
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmosn
StepHypRef Expression
1 idd 24 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 nfsbc1v 3794 . . . . 5 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 3785 . . . . 5 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
42, 3rexsngf 4612 . . . 4 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
52, 3reusngf 4614 . . . 4 (𝐴 ∈ V → (∃!𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
61, 4, 53imtr4d 296 . . 3 (𝐴 ∈ V → (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
7 rmo5 3436 . . 3 (∃*𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 → ∃!𝑥 ∈ {𝐴}𝜑))
86, 7sylibr 236 . 2 (𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
9 rmo0 4321 . . 3 ∃*𝑥 ∈ ∅ 𝜑
10 snprc 4655 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
11 rmoeq1 3410 . . . 4 ({𝐴} = ∅ → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
1210, 11sylbi 219 . . 3 𝐴 ∈ V → (∃*𝑥 ∈ {𝐴}𝜑 ↔ ∃*𝑥 ∈ ∅ 𝜑))
139, 12mpbiri 260 . 2 𝐴 ∈ V → ∃*𝑥 ∈ {𝐴}𝜑)
148, 13pm2.61i 184 1 ∃*𝑥 ∈ {𝐴}𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208   = wceq 1537  wcel 2114  wrex 3141  ∃!wreu 3142  ∃*wrmo 3143  Vcvv 3496  [wsbc 3774  c0 4293  {csn 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-v 3498  df-sbc 3775  df-dif 3941  df-nul 4294  df-sn 4570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator