Proof of Theorem rmob
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-rmo 3379 | . 2
⊢
(∃*𝑥 ∈
𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 2 |  | simprl 770 | . . . 4
⊢
((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → 𝐵 ∈ 𝐴) | 
| 3 |  | eleq1 2828 | . . . 4
⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | 
| 4 | 2, 3 | syl5ibcom 245 | . . 3
⊢
((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) | 
| 5 |  | simpl 482 | . . . 4
⊢ ((𝐶 ∈ 𝐴 ∧ 𝜒) → 𝐶 ∈ 𝐴) | 
| 6 | 5 | a1i 11 | . . 3
⊢
((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → ((𝐶 ∈ 𝐴 ∧ 𝜒) → 𝐶 ∈ 𝐴)) | 
| 7 | 2 | anim1i 615 | . . . . 5
⊢
(((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) ∧ 𝐶 ∈ 𝐴) → (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) | 
| 8 |  | simpll 766 | . . . . 5
⊢
(((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) ∧ 𝐶 ∈ 𝐴) → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 9 |  | simplr 768 | . . . . 5
⊢
(((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) ∧ 𝐶 ∈ 𝐴) → (𝐵 ∈ 𝐴 ∧ 𝜓)) | 
| 10 |  | eleq1 2828 | . . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | 
| 11 |  | rmoi.b | . . . . . . 7
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | 
| 12 | 10, 11 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝐵 ∈ 𝐴 ∧ 𝜓))) | 
| 13 |  | eleq1 2828 | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝑥 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | 
| 14 |  | rmoi.c | . . . . . . 7
⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) | 
| 15 | 13, 14 | anbi12d 632 | . . . . . 6
⊢ (𝑥 = 𝐶 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | 
| 16 | 12, 15 | mob 3722 | . . . . 5
⊢ (((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) ∧ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | 
| 17 | 7, 8, 9, 16 | syl3anc 1372 | . . . 4
⊢
(((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) ∧ 𝐶 ∈ 𝐴) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | 
| 18 | 17 | ex 412 | . . 3
⊢
((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐶 ∈ 𝐴 → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒)))) | 
| 19 | 4, 6, 18 | pm5.21ndd 379 | . 2
⊢
((∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) | 
| 20 | 1, 19 | sylanb 581 | 1
⊢
((∃*𝑥 ∈
𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) |