| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoi | Structured version Visualization version GIF version | ||
| Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
| Ref | Expression |
|---|---|
| rmoi.b | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
| rmoi.c | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rmoi | ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi.b | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 2 | rmoi.c | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) | |
| 3 | 1, 2 | rmob 3870 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) |
| 4 | 3 | biimp3ar 1472 | 1 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃*wrmo 3363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-clab 2715 df-cleq 2728 df-clel 2810 df-rmo 3364 df-v 3466 |
| This theorem is referenced by: eqsqrtd 15391 efgred2 19739 0frgp 19765 frgpnabllem2 19860 frgpcyg 21539 cdleme0moN 40249 proot1mul 43185 |
| Copyright terms: Public domain | W3C validator |