![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmoi | Structured version Visualization version GIF version |
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
rmoi.b | ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) |
rmoi.c | ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
rmoi | ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoi.b | . . 3 ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) | |
2 | rmoi.c | . . 3 ⊢ (𝑥 = 𝐶 → (𝜑 ↔ 𝜒)) | |
3 | 1, 2 | rmob 3884 | . 2 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓)) → (𝐵 = 𝐶 ↔ (𝐶 ∈ 𝐴 ∧ 𝜒))) |
4 | 3 | biimp3ar 1469 | 1 ⊢ ((∃*𝑥 ∈ 𝐴 𝜑 ∧ (𝐵 ∈ 𝐴 ∧ 𝜓) ∧ (𝐶 ∈ 𝐴 ∧ 𝜒)) → 𝐵 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∃*wrmo 3374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-rmo 3375 df-v 3475 |
This theorem is referenced by: eqsqrtd 15321 efgred2 19666 0frgp 19692 frgpnabllem2 19787 frgpcyg 21352 cdleme0moN 39412 proot1mul 42256 |
Copyright terms: Public domain | W3C validator |