MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoi Structured version   Visualization version   GIF version

Theorem rmoi 3803
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b (𝑥 = 𝐵 → (𝜑𝜓))
rmoi.c (𝑥 = 𝐶 → (𝜑𝜒))
Assertion
Ref Expression
rmoi ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rmoi
StepHypRef Expression
1 rmoi.b . . 3 (𝑥 = 𝐵 → (𝜑𝜓))
2 rmoi.c . . 3 (𝑥 = 𝐶 → (𝜑𝜒))
31, 2rmob 3802 . 2 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓)) → (𝐵 = 𝐶 ↔ (𝐶𝐴𝜒)))
43biimp3ar 1472 1 ((∃*𝑥𝐴 𝜑 ∧ (𝐵𝐴𝜓) ∧ (𝐶𝐴𝜒)) → 𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  ∃*wrmo 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-clab 2715  df-cleq 2729  df-clel 2816  df-rmo 3069  df-v 3410
This theorem is referenced by:  eqsqrtd  14931  efgred2  19143  0frgp  19169  frgpnabllem2  19259  frgpcyg  20538  cdleme0moN  37976  proot1mul  40727
  Copyright terms: Public domain W3C validator