MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mob Structured version   Visualization version   GIF version

Theorem mob 3600
Description: Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.)
Hypotheses
Ref Expression
moi.1 (𝑥 = 𝐴 → (𝜑𝜓))
moi.2 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
mob (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜒,𝑥   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝐷(𝑥)

Proof of Theorem mob
StepHypRef Expression
1 elex 3414 . . . . 5 (𝐵𝐷𝐵 ∈ V)
2 nfv 1957 . . . . . . . . . 10 𝑥 𝐵 ∈ V
3 nfmo1 2573 . . . . . . . . . 10 𝑥∃*𝑥𝜑
4 nfv 1957 . . . . . . . . . 10 𝑥𝜓
52, 3, 4nf3an 1948 . . . . . . . . 9 𝑥(𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)
6 nfv 1957 . . . . . . . . 9 𝑥(𝐴 = 𝐵𝜒)
75, 6nfim 1943 . . . . . . . 8 𝑥((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
8 moi.1 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝜑𝜓))
983anbi3d 1515 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) ↔ (𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓)))
10 eqeq1 2782 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥 = 𝐵𝐴 = 𝐵))
1110bibi1d 335 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑥 = 𝐵𝜒) ↔ (𝐴 = 𝐵𝜒)))
129, 11imbi12d 336 . . . . . . . 8 (𝑥 = 𝐴 → (((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒)) ↔ ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
13 moi.2 . . . . . . . . 9 (𝑥 = 𝐵 → (𝜑𝜒))
1413mob2 3598 . . . . . . . 8 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐵𝜒))
157, 12, 14vtoclg1f 3466 . . . . . . 7 (𝐴𝐶 → ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
1615com12 32 . . . . . 6 ((𝐵 ∈ V ∧ ∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒)))
17163expib 1113 . . . . 5 (𝐵 ∈ V → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
181, 17syl 17 . . . 4 (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴𝐶 → (𝐴 = 𝐵𝜒))))
1918com3r 87 . . 3 (𝐴𝐶 → (𝐵𝐷 → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))))
2019imp 397 . 2 ((𝐴𝐶𝐵𝐷) → ((∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒)))
21203impib 1105 1 (((𝐴𝐶𝐵𝐷) ∧ ∃*𝑥𝜑𝜓) → (𝐴 = 𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  ∃*wmo 2549  Vcvv 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400
This theorem is referenced by:  moi  3601  rmob  3747
  Copyright terms: Public domain W3C validator