MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mob2 Structured version   Visualization version   GIF version

Theorem mob2 3737
Description: Consequence of "at most one". (Contributed by NM, 2-Jan-2015.)
Hypothesis
Ref Expression
moi2.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
mob2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem mob2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → 𝜑)
2 moi2.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
31, 2syl5ibcom 245 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
4 nfv 1913 . . . . . . . . 9 𝑥𝜓
54, 2sbhypf 3556 . . . . . . . 8 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
65anbi2d 629 . . . . . . 7 (𝑦 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ (𝜑𝜓)))
7 eqeq2 2752 . . . . . . 7 (𝑦 = 𝐴 → (𝑥 = 𝑦𝑥 = 𝐴))
86, 7imbi12d 344 . . . . . 6 (𝑦 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ((𝜑𝜓) → 𝑥 = 𝐴)))
98spcgv 3609 . . . . 5 (𝐴𝐵 → (∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ((𝜑𝜓) → 𝑥 = 𝐴)))
10 nfs1v 2157 . . . . . . 7 𝑥[𝑦 / 𝑥]𝜑
11 sbequ12 2252 . . . . . . 7 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
1210, 11mo4f 2570 . . . . . 6 (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
13 sp 2184 . . . . . 6 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
1412, 13sylbi 217 . . . . 5 (∃*𝑥𝜑 → ∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
159, 14impel 505 . . . 4 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → ((𝜑𝜓) → 𝑥 = 𝐴))
1615expd 415 . . 3 ((𝐴𝐵 ∧ ∃*𝑥𝜑) → (𝜑 → (𝜓𝑥 = 𝐴)))
17163impia 1117 . 2 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝜓𝑥 = 𝐴))
183, 17impbid 212 1 ((𝐴𝐵 ∧ ∃*𝑥𝜑𝜑) → (𝑥 = 𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  [wsb 2064  wcel 2108  ∃*wmo 2541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490
This theorem is referenced by:  moi2  3738  mob  3739  rmob2  3914
  Copyright terms: Public domain W3C validator