| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rossspw | Structured version Visualization version GIF version | ||
| Description: A ring of sets is a collection of subsets of 𝑂. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| isros.1 | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
| Ref | Expression |
|---|---|
| rossspw | ⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isros.1 | . . . 4 ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} | |
| 2 | 1 | isros 34192 | . . 3 ⊢ (𝑆 ∈ 𝑄 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆))) |
| 3 | 2 | simp1bi 1145 | . 2 ⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝒫 𝒫 𝑂) |
| 4 | 3 | elpwid 4560 | 1 ⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3049 {crab 3397 ∖ cdif 3896 ∪ cun 3897 ⊆ wss 3899 ∅c0 4284 𝒫 cpw 4551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-pw 4553 |
| This theorem is referenced by: rossros 34204 |
| Copyright terms: Public domain | W3C validator |