Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rossspw Structured version   Visualization version   GIF version

Theorem rossspw 32037
Description: A ring of sets is a collection of subsets of 𝑂. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
Assertion
Ref Expression
rossspw (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦)

Proof of Theorem rossspw
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isros.1 . . . 4 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
21isros 32036 . . 3 (𝑆𝑄 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑢𝑆𝑣𝑆 ((𝑢𝑣) ∈ 𝑆 ∧ (𝑢𝑣) ∈ 𝑆)))
32simp1bi 1143 . 2 (𝑆𝑄𝑆 ∈ 𝒫 𝒫 𝑂)
43elpwid 4541 1 (𝑆𝑄𝑆 ⊆ 𝒫 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  cun 3881  wss 3883  c0 4253  𝒫 cpw 4530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pw 4532
This theorem is referenced by:  rossros  32048
  Copyright terms: Public domain W3C validator