Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rossspw | Structured version Visualization version GIF version |
Description: A ring of sets is a collection of subsets of 𝑂. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
Ref | Expression |
---|---|
isros.1 | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
Ref | Expression |
---|---|
rossspw | ⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isros.1 | . . . 4 ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} | |
2 | 1 | isros 31706 | . . 3 ⊢ (𝑆 ∈ 𝑄 ↔ (𝑆 ∈ 𝒫 𝒫 𝑂 ∧ ∅ ∈ 𝑆 ∧ ∀𝑢 ∈ 𝑆 ∀𝑣 ∈ 𝑆 ((𝑢 ∪ 𝑣) ∈ 𝑆 ∧ (𝑢 ∖ 𝑣) ∈ 𝑆))) |
3 | 2 | simp1bi 1146 | . 2 ⊢ (𝑆 ∈ 𝑄 → 𝑆 ∈ 𝒫 𝒫 𝑂) |
4 | 3 | elpwid 4499 | 1 ⊢ (𝑆 ∈ 𝑄 → 𝑆 ⊆ 𝒫 𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∀wral 3053 {crab 3057 ∖ cdif 3840 ∪ cun 3841 ⊆ wss 3843 ∅c0 4211 𝒫 cpw 4488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pw 4490 |
This theorem is referenced by: rossros 31718 |
Copyright terms: Public domain | W3C validator |