![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
rpssxr | ⊢ ℝ+ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 12980 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | ressxr 11257 | . 2 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstri 3991 | 1 ⊢ ℝ+ ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3948 ℝcr 11108 ℝ*cxr 11246 ℝ+crp 12973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-un 3953 df-in 3955 df-ss 3965 df-xr 11251 df-rp 12974 |
This theorem is referenced by: cnrefiisplem 44535 |
Copyright terms: Public domain | W3C validator |