| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| rpssxr | ⊢ ℝ+ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12966 | . 2 ⊢ ℝ+ ⊆ ℝ | |
| 2 | ressxr 11225 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 3 | 1, 2 | sstri 3959 | 1 ⊢ ℝ+ ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3917 ℝcr 11074 ℝ*cxr 11214 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-ss 3934 df-xr 11219 df-rp 12959 |
| This theorem is referenced by: cnrefiisplem 45834 |
| Copyright terms: Public domain | W3C validator |