| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| rpssxr | ⊢ ℝ+ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12904 | . 2 ⊢ ℝ+ ⊆ ℝ | |
| 2 | ressxr 11167 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 3 | 1, 2 | sstri 3940 | 1 ⊢ ℝ+ ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3898 ℝcr 11016 ℝ*cxr 11156 ℝ+crp 12896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-un 3903 df-ss 3915 df-xr 11161 df-rp 12897 |
| This theorem is referenced by: cnrefiisplem 45989 |
| Copyright terms: Public domain | W3C validator |