![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
rpssxr | ⊢ ℝ+ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 13039 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | ressxr 11302 | . 2 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstri 4004 | 1 ⊢ ℝ+ ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3962 ℝcr 11151 ℝ*cxr 11291 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-un 3967 df-ss 3979 df-xr 11296 df-rp 13032 |
This theorem is referenced by: cnrefiisplem 45784 |
Copyright terms: Public domain | W3C validator |