![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
rpssxr | ⊢ ℝ+ ⊆ ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpssre 13064 | . 2 ⊢ ℝ+ ⊆ ℝ | |
2 | ressxr 11334 | . 2 ⊢ ℝ ⊆ ℝ* | |
3 | 1, 2 | sstri 4018 | 1 ⊢ ℝ+ ⊆ ℝ* |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 ℝcr 11183 ℝ*cxr 11323 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-ss 3993 df-xr 11328 df-rp 13058 |
This theorem is referenced by: cnrefiisplem 45750 |
Copyright terms: Public domain | W3C validator |