| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rpssxr | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the extended reals. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
| Ref | Expression |
|---|---|
| rpssxr | ⊢ ℝ+ ⊆ ℝ* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpssre 12959 | . 2 ⊢ ℝ+ ⊆ ℝ | |
| 2 | ressxr 11218 | . 2 ⊢ ℝ ⊆ ℝ* | |
| 3 | 1, 2 | sstri 3956 | 1 ⊢ ℝ+ ⊆ ℝ* |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 ℝcr 11067 ℝ*cxr 11207 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-ss 3931 df-xr 11212 df-rp 12952 |
| This theorem is referenced by: cnrefiisplem 45827 |
| Copyright terms: Public domain | W3C validator |