Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > absimlere | Structured version Visualization version GIF version |
Description: The absolute value of the imaginary part of a complex number is a lower bound of the distance to any real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
absimlere.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
absimlere.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
absimlere | ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absimlere.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | absimlere.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | 2 | recnd 10866 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
4 | 1, 3 | subcld 11194 | . . 3 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
5 | absimle 14878 | . . 3 ⊢ ((𝐴 − 𝐵) ∈ ℂ → (abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (abs‘(ℑ‘(𝐴 − 𝐵))) ≤ (abs‘(𝐴 − 𝐵))) |
7 | 1, 3 | imsubd 14785 | . . . 4 ⊢ (𝜑 → (ℑ‘(𝐴 − 𝐵)) = ((ℑ‘𝐴) − (ℑ‘𝐵))) |
8 | 2 | reim0d 14793 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐵) = 0) |
9 | 8 | oveq2d 7234 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝐴) − (ℑ‘𝐵)) = ((ℑ‘𝐴) − 0)) |
10 | 1 | imcld 14763 | . . . . . 6 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℝ) |
11 | 10 | recnd 10866 | . . . . 5 ⊢ (𝜑 → (ℑ‘𝐴) ∈ ℂ) |
12 | 11 | subid1d 11183 | . . . 4 ⊢ (𝜑 → ((ℑ‘𝐴) − 0) = (ℑ‘𝐴)) |
13 | 7, 9, 12 | 3eqtrrd 2782 | . . 3 ⊢ (𝜑 → (ℑ‘𝐴) = (ℑ‘(𝐴 − 𝐵))) |
14 | 13 | fveq2d 6726 | . 2 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) = (abs‘(ℑ‘(𝐴 − 𝐵)))) |
15 | 3, 1 | abssubd 15022 | . 2 ⊢ (𝜑 → (abs‘(𝐵 − 𝐴)) = (abs‘(𝐴 − 𝐵))) |
16 | 6, 14, 15 | 3brtr4d 5090 | 1 ⊢ (𝜑 → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝐵 − 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5058 ‘cfv 6385 (class class class)co 7218 ℂcc 10732 ℝcr 10733 0cc0 10734 ≤ cle 10873 − cmin 11067 ℑcim 14666 abscabs 14802 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 ax-pre-sup 10812 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-iun 4911 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-om 7650 df-2nd 7767 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-sup 9063 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-div 11495 df-nn 11836 df-2 11898 df-3 11899 df-n0 12096 df-z 12182 df-uz 12444 df-rp 12592 df-seq 13580 df-exp 13641 df-cj 14667 df-re 14668 df-im 14669 df-sqrt 14803 df-abs 14804 |
This theorem is referenced by: cnrefiisplem 43053 |
Copyright terms: Public domain | W3C validator |