Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisplem Structured version   Visualization version   GIF version

Theorem cnrefiisplem 45834
Description: Lemma for cnrefiisp 45835 (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisplem.a (𝜑𝐴 ∈ ℂ)
cnrefiisplem.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisplem.b (𝜑𝐵 ∈ Fin)
cnrefiisplem.c 𝐶 = (ℝ ∪ 𝐵)
cnrefiisplem.d 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
cnrefiisplem.x 𝑋 = inf(𝐷, ℝ*, < )
Assertion
Ref Expression
cnrefiisplem (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶   𝑥,𝑋,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem cnrefiisplem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 = (abs‘(ℑ‘𝐴)))
2 cnrefiisplem.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 cnrefiisplem.n . . . . . . . . 9 (𝜑 → ¬ 𝐴 ∈ ℝ)
42, 3absimnre 45479 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
54adantr 480 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
61, 5eqeltrd 2829 . . . . . 6 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
76adantlr 715 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
8 simpll 766 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝜑)
9 cnrefiisplem.d . . . . . . . . . . . 12 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
109eleq2i 2821 . . . . . . . . . . 11 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
1110biimpi 216 . . . . . . . . . 10 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
12 nelsn 4633 . . . . . . . . . 10 (𝑤 ≠ (abs‘(ℑ‘𝐴)) → ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))})
13 elunnel1 4120 . . . . . . . . . 10 ((𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∧ ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))}) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
1411, 12, 13syl2an 596 . . . . . . . . 9 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
15 eliun 4962 . . . . . . . . 9 (𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
1614, 15sylib 218 . . . . . . . 8 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
17 velsn 4608 . . . . . . . . 9 (𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ 𝑤 = (abs‘(𝑦𝐴)))
1817rexbii 3077 . . . . . . . 8 (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
1916, 18sylib 218 . . . . . . 7 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
2019adantll 714 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
21 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 = (abs‘(𝑦𝐴)))
22 eldifi 4097 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ (𝐵 ∩ ℂ))
2322elin2d 4171 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ ℂ)
2423ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦 ∈ ℂ)
252ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝐴 ∈ ℂ)
2624, 25subcld 11540 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ∈ ℂ)
27 eldifsni 4757 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦𝐴)
2827ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦𝐴)
2924, 25, 28subne0d 11549 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ≠ 0)
3026, 29absrpcld 15424 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (abs‘(𝑦𝐴)) ∈ ℝ+)
3121, 30eqeltrd 2829 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 ∈ ℝ+)
3231rexlimdva2 3137 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)) → 𝑤 ∈ ℝ+))
338, 20, 32sylc 65 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
347, 33pm2.61dane 3013 . . . 4 ((𝜑𝑤𝐷) → 𝑤 ∈ ℝ+)
3534ssd 45081 . . 3 (𝜑𝐷 ⊆ ℝ+)
36 cnrefiisplem.x . . . 4 𝑋 = inf(𝐷, ℝ*, < )
37 xrltso 13108 . . . . . 6 < Or ℝ*
3837a1i 11 . . . . 5 (𝜑 → < Or ℝ*)
39 snfi 9017 . . . . . . . 8 {(abs‘(ℑ‘𝐴))} ∈ Fin
4039a1i 11 . . . . . . 7 (𝜑 → {(abs‘(ℑ‘𝐴))} ∈ Fin)
41 cnrefiisplem.b . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
42 inss1 4203 . . . . . . . . . . 11 (𝐵 ∩ ℂ) ⊆ 𝐵
4342a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℂ) ⊆ 𝐵)
4443ssdifssd 4113 . . . . . . . . 9 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ⊆ 𝐵)
4541, 44ssfid 9219 . . . . . . . 8 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin)
46 snfi 9017 . . . . . . . . 9 {(abs‘(𝑦𝐴))} ∈ Fin
4746rgenw 3049 . . . . . . . 8 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin
48 iunfi 9301 . . . . . . . 8 ((((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin ∧ ∀𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
4945, 47, 48sylancl 586 . . . . . . 7 (𝜑 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
5040, 49unfid 9142 . . . . . 6 (𝜑 → ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∈ Fin)
519, 50eqeltrid 2833 . . . . 5 (𝜑𝐷 ∈ Fin)
52 fvex 6874 . . . . . . . . . 10 (abs‘(ℑ‘𝐴)) ∈ V
5352snid 4629 . . . . . . . . 9 (abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))}
54 elun1 4148 . . . . . . . . 9 ((abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))} → (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
5553, 54ax-mp 5 . . . . . . . 8 (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
5655, 9eleqtrri 2828 . . . . . . 7 (abs‘(ℑ‘𝐴)) ∈ 𝐷
5756a1i 11 . . . . . 6 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ 𝐷)
5857ne0d 4308 . . . . 5 (𝜑𝐷 ≠ ∅)
59 rpssxr 45483 . . . . . 6 + ⊆ ℝ*
6035, 59sstrdi 3962 . . . . 5 (𝜑𝐷 ⊆ ℝ*)
61 fiinfcl 9461 . . . . 5 (( < Or ℝ* ∧ (𝐷 ∈ Fin ∧ 𝐷 ≠ ∅ ∧ 𝐷 ⊆ ℝ*)) → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6238, 51, 58, 60, 61syl13anc 1374 . . . 4 (𝜑 → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6336, 62eqeltrid 2833 . . 3 (𝜑𝑋𝐷)
6435, 63sseldd 3950 . 2 (𝜑𝑋 ∈ ℝ+)
6535, 62sseldd 3950 . . . . . . . . . 10 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ+)
6665rpred 13002 . . . . . . . . 9 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ)
6766adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ∈ ℝ)
682imcld 15168 . . . . . . . . . . 11 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
6968recnd 11209 . . . . . . . . . 10 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7069adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
7170abscld 15412 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
72 recn 11165 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
742adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
7573, 74subcld 11540 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦𝐴) ∈ ℂ)
7675abscld 15412 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝑦𝐴)) ∈ ℝ)
7760adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐷 ⊆ ℝ*)
78 infxrlb 13302 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(ℑ‘𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
7977, 56, 78sylancl 586 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
80 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8174, 80absimlere 45482 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝑦𝐴)))
8267, 71, 76, 79, 81letrd 11338 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
8336, 82eqbrtrid 5145 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
8483ad4ant14 752 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
85 cnrefiisplem.c . . . . . . . . 9 𝐶 = (ℝ ∪ 𝐵)
8685eleq2i 2821 . . . . . . . 8 (𝑦𝐶𝑦 ∈ (ℝ ∪ 𝐵))
87 elunnel1 4120 . . . . . . . 8 ((𝑦 ∈ (ℝ ∪ 𝐵) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8886, 87sylanb 581 . . . . . . 7 ((𝑦𝐶 ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8988ad4ant24 754 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
9060ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝐷 ⊆ ℝ*)
91 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
92 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
9391, 92elind 4166 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐵 ∩ ℂ))
94 nelsn 4633 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → ¬ 𝑦 ∈ {𝐴})
9594ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {𝐴})
9693, 95eldifd 3928 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}))
97 fvex 6874 . . . . . . . . . . . . . . 15 (abs‘(𝑦𝐴)) ∈ V
9897snid 4629 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}
99 fvoveq1 7413 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
10099sneqd 4604 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → {(abs‘(𝑤𝐴))} = {(abs‘(𝑦𝐴))})
101100eliuni 4964 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) ∧ (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
10296, 98, 101sylancl 586 . . . . . . . . . . . . 13 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
103100cbviunv 5007 . . . . . . . . . . . . 13 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))} = 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}
104102, 103eleqtrdi 2839 . . . . . . . . . . . 12 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
105 elun2 4149 . . . . . . . . . . . 12 ((abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
106104, 105syl 17 . . . . . . . . . . 11 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
107106, 9eleqtrrdi 2840 . . . . . . . . . 10 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
108107adantll 714 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
109 infxrlb 13302 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(𝑦𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11090, 108, 109syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11136, 110eqbrtrid 5145 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
112111adantllr 719 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11389, 112syldan 591 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11484, 113pm2.61dan 812 . . . 4 (((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) → 𝑋 ≤ (abs‘(𝑦𝐴)))
115114ex 412 . . 3 ((𝜑𝑦𝐶) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
116115ralrimiva 3126 . 2 (𝜑 → ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
117 breq1 5113 . . . . 5 (𝑥 = 𝑋 → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑋 ≤ (abs‘(𝑦𝐴))))
118117imbi2d 340 . . . 4 (𝑥 = 𝑋 → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
119118ralbidv 3157 . . 3 (𝑥 = 𝑋 → (∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
120119rspcev 3591 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))) → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
12164, 116, 120syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  {csn 4592   ciun 4958   class class class wbr 5110   Or wor 5548  cfv 6514  (class class class)co 7390  Fincfn 8921  infcinf 9399  cc 11073  cr 11074  *cxr 11214   < clt 11215  cle 11216  cmin 11412  +crp 12958  cim 15071  abscabs 15207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209
This theorem is referenced by:  cnrefiisp  45835
  Copyright terms: Public domain W3C validator