Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisplem Structured version   Visualization version   GIF version

Theorem cnrefiisplem 42471
Description: Lemma for cnrefiisp 42472 (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisplem.a (𝜑𝐴 ∈ ℂ)
cnrefiisplem.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisplem.b (𝜑𝐵 ∈ Fin)
cnrefiisplem.c 𝐶 = (ℝ ∪ 𝐵)
cnrefiisplem.d 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
cnrefiisplem.x 𝑋 = inf(𝐷, ℝ*, < )
Assertion
Ref Expression
cnrefiisplem (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶   𝑥,𝑋,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem cnrefiisplem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 = (abs‘(ℑ‘𝐴)))
2 cnrefiisplem.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 cnrefiisplem.n . . . . . . . . 9 (𝜑 → ¬ 𝐴 ∈ ℝ)
42, 3absimnre 42116 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
54adantr 484 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
61, 5eqeltrd 2890 . . . . . 6 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
76adantlr 714 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
8 simpll 766 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝜑)
9 cnrefiisplem.d . . . . . . . . . . . 12 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
109eleq2i 2881 . . . . . . . . . . 11 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
1110biimpi 219 . . . . . . . . . 10 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
12 nelsn 4565 . . . . . . . . . 10 (𝑤 ≠ (abs‘(ℑ‘𝐴)) → ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))})
13 elunnel1 4077 . . . . . . . . . 10 ((𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∧ ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))}) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
1411, 12, 13syl2an 598 . . . . . . . . 9 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
15 eliun 4885 . . . . . . . . 9 (𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
1614, 15sylib 221 . . . . . . . 8 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
17 velsn 4541 . . . . . . . . 9 (𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ 𝑤 = (abs‘(𝑦𝐴)))
1817rexbii 3210 . . . . . . . 8 (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
1916, 18sylib 221 . . . . . . 7 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
2019adantll 713 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
21 simpr 488 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 = (abs‘(𝑦𝐴)))
22 eldifi 4054 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ (𝐵 ∩ ℂ))
2322elin2d 4126 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ ℂ)
2423ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦 ∈ ℂ)
252ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝐴 ∈ ℂ)
2624, 25subcld 10986 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ∈ ℂ)
27 eldifsni 4683 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦𝐴)
2827ad2antlr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦𝐴)
2924, 25, 28subne0d 10995 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ≠ 0)
3026, 29absrpcld 14800 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (abs‘(𝑦𝐴)) ∈ ℝ+)
3121, 30eqeltrd 2890 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 ∈ ℝ+)
3231rexlimdva2 3246 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)) → 𝑤 ∈ ℝ+))
338, 20, 32sylc 65 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
347, 33pm2.61dane 3074 . . . 4 ((𝜑𝑤𝐷) → 𝑤 ∈ ℝ+)
3534ssd 41716 . . 3 (𝜑𝐷 ⊆ ℝ+)
36 cnrefiisplem.x . . . 4 𝑋 = inf(𝐷, ℝ*, < )
37 xrltso 12522 . . . . . 6 < Or ℝ*
3837a1i 11 . . . . 5 (𝜑 → < Or ℝ*)
39 snfi 8577 . . . . . . . 8 {(abs‘(ℑ‘𝐴))} ∈ Fin
4039a1i 11 . . . . . . 7 (𝜑 → {(abs‘(ℑ‘𝐴))} ∈ Fin)
41 cnrefiisplem.b . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
42 inss1 4155 . . . . . . . . . . 11 (𝐵 ∩ ℂ) ⊆ 𝐵
4342a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℂ) ⊆ 𝐵)
4443ssdifssd 4070 . . . . . . . . 9 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ⊆ 𝐵)
4541, 44ssfid 8725 . . . . . . . 8 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin)
46 snfi 8577 . . . . . . . . 9 {(abs‘(𝑦𝐴))} ∈ Fin
4746rgenw 3118 . . . . . . . 8 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin
48 iunfi 8796 . . . . . . . 8 ((((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin ∧ ∀𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
4945, 47, 48sylancl 589 . . . . . . 7 (𝜑 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
5040, 49unfid 41790 . . . . . 6 (𝜑 → ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∈ Fin)
519, 50eqeltrid 2894 . . . . 5 (𝜑𝐷 ∈ Fin)
52 fvex 6658 . . . . . . . . . 10 (abs‘(ℑ‘𝐴)) ∈ V
5352snid 4561 . . . . . . . . 9 (abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))}
54 elun1 4103 . . . . . . . . 9 ((abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))} → (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
5553, 54ax-mp 5 . . . . . . . 8 (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
5655, 9eleqtrri 2889 . . . . . . 7 (abs‘(ℑ‘𝐴)) ∈ 𝐷
5756a1i 11 . . . . . 6 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ 𝐷)
5857ne0d 4251 . . . . 5 (𝜑𝐷 ≠ ∅)
59 rpssxr 42120 . . . . . 6 + ⊆ ℝ*
6035, 59sstrdi 3927 . . . . 5 (𝜑𝐷 ⊆ ℝ*)
61 fiinfcl 8949 . . . . 5 (( < Or ℝ* ∧ (𝐷 ∈ Fin ∧ 𝐷 ≠ ∅ ∧ 𝐷 ⊆ ℝ*)) → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6238, 51, 58, 60, 61syl13anc 1369 . . . 4 (𝜑 → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6336, 62eqeltrid 2894 . . 3 (𝜑𝑋𝐷)
6435, 63sseldd 3916 . 2 (𝜑𝑋 ∈ ℝ+)
6535, 62sseldd 3916 . . . . . . . . . 10 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ+)
6665rpred 12419 . . . . . . . . 9 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ)
6766adantr 484 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ∈ ℝ)
682imcld 14546 . . . . . . . . . . 11 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
6968recnd 10658 . . . . . . . . . 10 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7069adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
7170abscld 14788 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
72 recn 10616 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
7372adantl 485 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
742adantr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
7573, 74subcld 10986 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦𝐴) ∈ ℂ)
7675abscld 14788 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝑦𝐴)) ∈ ℝ)
7760adantr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐷 ⊆ ℝ*)
78 infxrlb 12715 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(ℑ‘𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
7977, 56, 78sylancl 589 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
80 simpr 488 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8174, 80absimlere 42119 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝑦𝐴)))
8267, 71, 76, 79, 81letrd 10786 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
8336, 82eqbrtrid 5065 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
8483ad4ant14 751 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
85 cnrefiisplem.c . . . . . . . . 9 𝐶 = (ℝ ∪ 𝐵)
8685eleq2i 2881 . . . . . . . 8 (𝑦𝐶𝑦 ∈ (ℝ ∪ 𝐵))
87 elunnel1 4077 . . . . . . . 8 ((𝑦 ∈ (ℝ ∪ 𝐵) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8886, 87sylanb 584 . . . . . . 7 ((𝑦𝐶 ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8988ad4ant24 753 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
9060ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝐷 ⊆ ℝ*)
91 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
92 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
9391, 92elind 4121 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐵 ∩ ℂ))
94 nelsn 4565 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → ¬ 𝑦 ∈ {𝐴})
9594ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {𝐴})
9693, 95eldifd 3892 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}))
97 fvex 6658 . . . . . . . . . . . . . . 15 (abs‘(𝑦𝐴)) ∈ V
9897snid 4561 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}
99 fvoveq1 7158 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
10099sneqd 4537 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → {(abs‘(𝑤𝐴))} = {(abs‘(𝑦𝐴))})
101100eliuni 4887 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) ∧ (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
10296, 98, 101sylancl 589 . . . . . . . . . . . . 13 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
103100cbviunv 4927 . . . . . . . . . . . . 13 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))} = 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}
104102, 103eleqtrdi 2900 . . . . . . . . . . . 12 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
105 elun2 4104 . . . . . . . . . . . 12 ((abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
106104, 105syl 17 . . . . . . . . . . 11 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
107106, 9eleqtrrdi 2901 . . . . . . . . . 10 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
108107adantll 713 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
109 infxrlb 12715 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(𝑦𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11090, 108, 109syl2anc 587 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11136, 110eqbrtrid 5065 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
112111adantllr 718 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11389, 112syldan 594 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11484, 113pm2.61dan 812 . . . 4 (((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) → 𝑋 ≤ (abs‘(𝑦𝐴)))
115114ex 416 . . 3 ((𝜑𝑦𝐶) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
116115ralrimiva 3149 . 2 (𝜑 → ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
117 breq1 5033 . . . . 5 (𝑥 = 𝑋 → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑋 ≤ (abs‘(𝑦𝐴))))
118117imbi2d 344 . . . 4 (𝑥 = 𝑋 → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
119118ralbidv 3162 . . 3 (𝑥 = 𝑋 → (∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
120119rspcev 3571 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))) → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
12164, 116, 120syl2anc 587 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  {csn 4525   ciun 4881   class class class wbr 5030   Or wor 5437  cfv 6324  (class class class)co 7135  Fincfn 8492  infcinf 8889  cc 10524  cr 10525  *cxr 10663   < clt 10664  cle 10665  cmin 10859  +crp 12377  cim 14449  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  cnrefiisp  42472
  Copyright terms: Public domain W3C validator