Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnrefiisplem Structured version   Visualization version   GIF version

Theorem cnrefiisplem 45814
Description: Lemma for cnrefiisp 45815 (some local definitions are used). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
cnrefiisplem.a (𝜑𝐴 ∈ ℂ)
cnrefiisplem.n (𝜑 → ¬ 𝐴 ∈ ℝ)
cnrefiisplem.b (𝜑𝐵 ∈ Fin)
cnrefiisplem.c 𝐶 = (ℝ ∪ 𝐵)
cnrefiisplem.d 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
cnrefiisplem.x 𝑋 = inf(𝐷, ℝ*, < )
Assertion
Ref Expression
cnrefiisplem (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Distinct variable groups:   𝑦,𝐴,𝑥   𝑦,𝐵   𝑥,𝐶   𝑥,𝑋,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem cnrefiisplem
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 = (abs‘(ℑ‘𝐴)))
2 cnrefiisplem.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3 cnrefiisplem.n . . . . . . . . 9 (𝜑 → ¬ 𝐴 ∈ ℝ)
42, 3absimnre 45459 . . . . . . . 8 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
54adantr 480 . . . . . . 7 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → (abs‘(ℑ‘𝐴)) ∈ ℝ+)
61, 5eqeltrd 2828 . . . . . 6 ((𝜑𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
76adantlr 715 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 = (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
8 simpll 766 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝜑)
9 cnrefiisplem.d . . . . . . . . . . . 12 𝐷 = ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
109eleq2i 2820 . . . . . . . . . . 11 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
1110biimpi 216 . . . . . . . . . 10 (𝑤𝐷𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
12 nelsn 4620 . . . . . . . . . 10 (𝑤 ≠ (abs‘(ℑ‘𝐴)) → ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))})
13 elunnel1 4107 . . . . . . . . . 10 ((𝑤 ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∧ ¬ 𝑤 ∈ {(abs‘(ℑ‘𝐴))}) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
1411, 12, 13syl2an 596 . . . . . . . . 9 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
15 eliun 4948 . . . . . . . . 9 (𝑤 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
1614, 15sylib 218 . . . . . . . 8 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))})
17 velsn 4595 . . . . . . . . 9 (𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ 𝑤 = (abs‘(𝑦𝐴)))
1817rexbii 3076 . . . . . . . 8 (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 ∈ {(abs‘(𝑦𝐴))} ↔ ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
1916, 18sylib 218 . . . . . . 7 ((𝑤𝐷𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
2019adantll 714 . . . . . 6 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → ∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)))
21 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 = (abs‘(𝑦𝐴)))
22 eldifi 4084 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ (𝐵 ∩ ℂ))
2322elin2d 4158 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦 ∈ ℂ)
2423ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦 ∈ ℂ)
252ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝐴 ∈ ℂ)
2624, 25subcld 11493 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ∈ ℂ)
27 eldifsni 4744 . . . . . . . . . . 11 (𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) → 𝑦𝐴)
2827ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑦𝐴)
2924, 25, 28subne0d 11502 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (𝑦𝐴) ≠ 0)
3026, 29absrpcld 15376 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → (abs‘(𝑦𝐴)) ∈ ℝ+)
3121, 30eqeltrd 2828 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})) ∧ 𝑤 = (abs‘(𝑦𝐴))) → 𝑤 ∈ ℝ+)
3231rexlimdva2 3132 . . . . . 6 (𝜑 → (∃𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴})𝑤 = (abs‘(𝑦𝐴)) → 𝑤 ∈ ℝ+))
338, 20, 32sylc 65 . . . . 5 (((𝜑𝑤𝐷) ∧ 𝑤 ≠ (abs‘(ℑ‘𝐴))) → 𝑤 ∈ ℝ+)
347, 33pm2.61dane 3012 . . . 4 ((𝜑𝑤𝐷) → 𝑤 ∈ ℝ+)
3534ssd 45061 . . 3 (𝜑𝐷 ⊆ ℝ+)
36 cnrefiisplem.x . . . 4 𝑋 = inf(𝐷, ℝ*, < )
37 xrltso 13061 . . . . . 6 < Or ℝ*
3837a1i 11 . . . . 5 (𝜑 → < Or ℝ*)
39 snfi 8975 . . . . . . . 8 {(abs‘(ℑ‘𝐴))} ∈ Fin
4039a1i 11 . . . . . . 7 (𝜑 → {(abs‘(ℑ‘𝐴))} ∈ Fin)
41 cnrefiisplem.b . . . . . . . . 9 (𝜑𝐵 ∈ Fin)
42 inss1 4190 . . . . . . . . . . 11 (𝐵 ∩ ℂ) ⊆ 𝐵
4342a1i 11 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ ℂ) ⊆ 𝐵)
4443ssdifssd 4100 . . . . . . . . 9 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ⊆ 𝐵)
4541, 44ssfid 9170 . . . . . . . 8 (𝜑 → ((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin)
46 snfi 8975 . . . . . . . . 9 {(abs‘(𝑦𝐴))} ∈ Fin
4746rgenw 3048 . . . . . . . 8 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin
48 iunfi 9252 . . . . . . . 8 ((((𝐵 ∩ ℂ) ∖ {𝐴}) ∈ Fin ∧ ∀𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
4945, 47, 48sylancl 586 . . . . . . 7 (𝜑 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} ∈ Fin)
5040, 49unfid 9096 . . . . . 6 (𝜑 → ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}) ∈ Fin)
519, 50eqeltrid 2832 . . . . 5 (𝜑𝐷 ∈ Fin)
52 fvex 6839 . . . . . . . . . 10 (abs‘(ℑ‘𝐴)) ∈ V
5352snid 4616 . . . . . . . . 9 (abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))}
54 elun1 4135 . . . . . . . . 9 ((abs‘(ℑ‘𝐴)) ∈ {(abs‘(ℑ‘𝐴))} → (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
5553, 54ax-mp 5 . . . . . . . 8 (abs‘(ℑ‘𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
5655, 9eleqtrri 2827 . . . . . . 7 (abs‘(ℑ‘𝐴)) ∈ 𝐷
5756a1i 11 . . . . . 6 (𝜑 → (abs‘(ℑ‘𝐴)) ∈ 𝐷)
5857ne0d 4295 . . . . 5 (𝜑𝐷 ≠ ∅)
59 rpssxr 45463 . . . . . 6 + ⊆ ℝ*
6035, 59sstrdi 3950 . . . . 5 (𝜑𝐷 ⊆ ℝ*)
61 fiinfcl 9412 . . . . 5 (( < Or ℝ* ∧ (𝐷 ∈ Fin ∧ 𝐷 ≠ ∅ ∧ 𝐷 ⊆ ℝ*)) → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6238, 51, 58, 60, 61syl13anc 1374 . . . 4 (𝜑 → inf(𝐷, ℝ*, < ) ∈ 𝐷)
6336, 62eqeltrid 2832 . . 3 (𝜑𝑋𝐷)
6435, 63sseldd 3938 . 2 (𝜑𝑋 ∈ ℝ+)
6535, 62sseldd 3938 . . . . . . . . . 10 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ+)
6665rpred 12955 . . . . . . . . 9 (𝜑 → inf(𝐷, ℝ*, < ) ∈ ℝ)
6766adantr 480 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ∈ ℝ)
682imcld 15120 . . . . . . . . . . 11 (𝜑 → (ℑ‘𝐴) ∈ ℝ)
6968recnd 11162 . . . . . . . . . 10 (𝜑 → (ℑ‘𝐴) ∈ ℂ)
7069adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (ℑ‘𝐴) ∈ ℂ)
7170abscld 15364 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ∈ ℝ)
72 recn 11118 . . . . . . . . . . 11 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
7372adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
742adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → 𝐴 ∈ ℂ)
7573, 74subcld 11493 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → (𝑦𝐴) ∈ ℂ)
7675abscld 15364 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(𝑦𝐴)) ∈ ℝ)
7760adantr 480 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝐷 ⊆ ℝ*)
78 infxrlb 13255 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(ℑ‘𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
7977, 56, 78sylancl 586 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(ℑ‘𝐴)))
80 simpr 484 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8174, 80absimlere 45462 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (abs‘(ℑ‘𝐴)) ≤ (abs‘(𝑦𝐴)))
8267, 71, 76, 79, 81letrd 11291 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
8336, 82eqbrtrid 5130 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
8483ad4ant14 752 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
85 cnrefiisplem.c . . . . . . . . 9 𝐶 = (ℝ ∪ 𝐵)
8685eleq2i 2820 . . . . . . . 8 (𝑦𝐶𝑦 ∈ (ℝ ∪ 𝐵))
87 elunnel1 4107 . . . . . . . 8 ((𝑦 ∈ (ℝ ∪ 𝐵) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8886, 87sylanb 581 . . . . . . 7 ((𝑦𝐶 ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
8988ad4ant24 754 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦𝐵)
9060ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝐷 ⊆ ℝ*)
91 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦𝐵)
92 simpll 766 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ℂ)
9391, 92elind 4153 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ (𝐵 ∩ ℂ))
94 nelsn 4620 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → ¬ 𝑦 ∈ {𝐴})
9594ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → ¬ 𝑦 ∈ {𝐴})
9693, 95eldifd 3916 . . . . . . . . . . . . . 14 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}))
97 fvex 6839 . . . . . . . . . . . . . . 15 (abs‘(𝑦𝐴)) ∈ V
9897snid 4616 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}
99 fvoveq1 7376 . . . . . . . . . . . . . . . 16 (𝑤 = 𝑦 → (abs‘(𝑤𝐴)) = (abs‘(𝑦𝐴)))
10099sneqd 4591 . . . . . . . . . . . . . . 15 (𝑤 = 𝑦 → {(abs‘(𝑤𝐴))} = {(abs‘(𝑦𝐴))})
101100eliuni 4950 . . . . . . . . . . . . . 14 ((𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}) ∧ (abs‘(𝑦𝐴)) ∈ {(abs‘(𝑦𝐴))}) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
10296, 98, 101sylancl 586 . . . . . . . . . . . . 13 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))})
103100cbviunv 4992 . . . . . . . . . . . . 13 𝑤 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑤𝐴))} = 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}
104102, 103eleqtrdi 2838 . . . . . . . . . . . 12 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))})
105 elun2 4136 . . . . . . . . . . . 12 ((abs‘(𝑦𝐴)) ∈ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))} → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
106104, 105syl 17 . . . . . . . . . . 11 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ ({(abs‘(ℑ‘𝐴))} ∪ 𝑦 ∈ ((𝐵 ∩ ℂ) ∖ {𝐴}){(abs‘(𝑦𝐴))}))
107106, 9eleqtrrdi 2839 . . . . . . . . . 10 (((𝑦 ∈ ℂ ∧ 𝑦𝐴) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
108107adantll 714 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → (abs‘(𝑦𝐴)) ∈ 𝐷)
109 infxrlb 13255 . . . . . . . . 9 ((𝐷 ⊆ ℝ* ∧ (abs‘(𝑦𝐴)) ∈ 𝐷) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11090, 108, 109syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → inf(𝐷, ℝ*, < ) ≤ (abs‘(𝑦𝐴)))
11136, 110eqbrtrid 5130 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
112111adantllr 719 . . . . . 6 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ 𝑦𝐵) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11389, 112syldan 591 . . . . 5 ((((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) ∧ ¬ 𝑦 ∈ ℝ) → 𝑋 ≤ (abs‘(𝑦𝐴)))
11484, 113pm2.61dan 812 . . . 4 (((𝜑𝑦𝐶) ∧ (𝑦 ∈ ℂ ∧ 𝑦𝐴)) → 𝑋 ≤ (abs‘(𝑦𝐴)))
115114ex 412 . . 3 ((𝜑𝑦𝐶) → ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
116115ralrimiva 3121 . 2 (𝜑 → ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴))))
117 breq1 5098 . . . . 5 (𝑥 = 𝑋 → (𝑥 ≤ (abs‘(𝑦𝐴)) ↔ 𝑋 ≤ (abs‘(𝑦𝐴))))
118117imbi2d 340 . . . 4 (𝑥 = 𝑋 → (((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
119118ralbidv 3152 . . 3 (𝑥 = 𝑋 → (∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))) ↔ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))))
120119rspcev 3579 . 2 ((𝑋 ∈ ℝ+ ∧ ∀𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑋 ≤ (abs‘(𝑦𝐴)))) → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
12164, 116, 120syl2anc 584 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑦𝐶 ((𝑦 ∈ ℂ ∧ 𝑦𝐴) → 𝑥 ≤ (abs‘(𝑦𝐴))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  {csn 4579   ciun 4944   class class class wbr 5095   Or wor 5530  cfv 6486  (class class class)co 7353  Fincfn 8879  infcinf 9350  cc 11026  cr 11027  *cxr 11167   < clt 11168  cle 11169  cmin 11365  +crp 12911  cim 15023  abscabs 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-seq 13927  df-exp 13987  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161
This theorem is referenced by:  cnrefiisp  45815
  Copyright terms: Public domain W3C validator