Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxrv Structured version   Visualization version   GIF version

Theorem monoordxrv 45432
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxrv.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoordxrv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxrv.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxrv (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoordxrv
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoordxrv.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 13569 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2827 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6907 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65breq2d 5160 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑀)))
74, 6imbi12d 344 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
87imbi2d 340 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))))
9 eleq1 2827 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 6907 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5160 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑛)))
129, 11imbi12d 344 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
1312imbi2d 340 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)))))
14 eleq1 2827 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 6907 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5160 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 344 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
1817imbi2d 340 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
19 eleq1 2827 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 6907 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5160 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑁)))
2219, 21imbi12d 344 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
2322imbi2d 340 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))))
24 eluzfz1 13568 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
251, 24syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
26 monoordxrv.2 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
2726ralrimiva 3144 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
28 fveq2 6907 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2928eleq1d 2824 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
3029rspcv 3618 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
3125, 27, 30sylc 65 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℝ*)
3231xrleidd 13191 . . . . . 6 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑀))
3332a1d 25 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))
3433a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
35 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
36 simprr 773 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
37 peano2fzr 13574 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3835, 36, 37syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3938expr 456 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
4039imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
41 eluzelz 12886 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
4235, 41syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
43 elfzuz3 13558 . . . . . . . . . 10 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
4436, 43syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
45 eluzp1m1 12902 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
4642, 44, 45syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
47 elfzuzb 13555 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
4835, 46, 47sylanbrc 583 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
49 monoordxrv.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
5049ralrimiva 3144 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
5150adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
52 fveq2 6907 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
53 fvoveq1 7454 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
5452, 53breq12d 5161 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
5554rspcv 3618 . . . . . . 7 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
5648, 51, 55sylc 65 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
5731adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑀) ∈ ℝ*)
5827adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
5952eleq1d 2824 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
6059rspcv 3618 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
6138, 58, 60sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ∈ ℝ*)
62 fveq2 6907 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6362eleq1d 2824 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
6463rspcv 3618 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
6536, 58, 64sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
66 xrletr 13197 . . . . . . 7 (((𝐹𝑀) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ* ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ*) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6757, 61, 65, 66syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6856, 67mpan2d 694 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6940, 68animpimp2impd 846 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
708, 13, 18, 23, 34, 69uzind4 12946 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
711, 70mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))
723, 71mpd 15 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156  *cxr 11292  cle 11294  cmin 11490  cz 12611  cuz 12876  ...cfz 13544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545
This theorem is referenced by:  monoordxr  45433  monoord2xrv  45434
  Copyright terms: Public domain W3C validator