Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoordxrv Structured version   Visualization version   GIF version

Theorem monoordxrv 42074
Description: Ordering relation for a monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 13-Feb-2022.)
Hypotheses
Ref Expression
monoordxrv.1 (𝜑𝑁 ∈ (ℤ𝑀))
monoordxrv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
monoordxrv.3 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
Assertion
Ref Expression
monoordxrv (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoordxrv
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 monoordxrv.1 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 12921 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 17 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 eleq1 2903 . . . . . 6 (𝑥 = 𝑀 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑀 ∈ (𝑀...𝑁)))
5 fveq2 6663 . . . . . . 7 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
65breq2d 5065 . . . . . 6 (𝑥 = 𝑀 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑀)))
74, 6imbi12d 348 . . . . 5 (𝑥 = 𝑀 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
87imbi2d 344 . . . 4 (𝑥 = 𝑀 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))))
9 eleq1 2903 . . . . . 6 (𝑥 = 𝑛 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
10 fveq2 6663 . . . . . . 7 (𝑥 = 𝑛 → (𝐹𝑥) = (𝐹𝑛))
1110breq2d 5065 . . . . . 6 (𝑥 = 𝑛 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑛)))
129, 11imbi12d 348 . . . . 5 (𝑥 = 𝑛 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
1312imbi2d 344 . . . 4 (𝑥 = 𝑛 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)))))
14 eleq1 2903 . . . . . 6 (𝑥 = (𝑛 + 1) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑛 + 1) ∈ (𝑀...𝑁)))
15 fveq2 6663 . . . . . . 7 (𝑥 = (𝑛 + 1) → (𝐹𝑥) = (𝐹‘(𝑛 + 1)))
1615breq2d 5065 . . . . . 6 (𝑥 = (𝑛 + 1) → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
1714, 16imbi12d 348 . . . . 5 (𝑥 = (𝑛 + 1) → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1)))))
1817imbi2d 344 . . . 4 (𝑥 = (𝑛 + 1) → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
19 eleq1 2903 . . . . . 6 (𝑥 = 𝑁 → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑁 ∈ (𝑀...𝑁)))
20 fveq2 6663 . . . . . . 7 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2120breq2d 5065 . . . . . 6 (𝑥 = 𝑁 → ((𝐹𝑀) ≤ (𝐹𝑥) ↔ (𝐹𝑀) ≤ (𝐹𝑁)))
2219, 21imbi12d 348 . . . . 5 (𝑥 = 𝑁 → ((𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥)) ↔ (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
2322imbi2d 344 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑥 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))))
24 eluzfz1 12920 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
251, 24syl 17 . . . . . . . 8 (𝜑𝑀 ∈ (𝑀...𝑁))
26 monoordxrv.2 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ*)
2726ralrimiva 3177 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
28 fveq2 6663 . . . . . . . . . 10 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
2928eleq1d 2900 . . . . . . . . 9 (𝑘 = 𝑀 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑀) ∈ ℝ*))
3029rspcv 3604 . . . . . . . 8 (𝑀 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑀) ∈ ℝ*))
3125, 27, 30sylc 65 . . . . . . 7 (𝜑 → (𝐹𝑀) ∈ ℝ*)
3231xrleidd 12544 . . . . . 6 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑀))
3332a1d 25 . . . . 5 (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀)))
3433a1i 11 . . . 4 (𝑀 ∈ ℤ → (𝜑 → (𝑀 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑀))))
35 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (ℤ𝑀))
36 simprr 772 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑛 + 1) ∈ (𝑀...𝑁))
37 peano2fzr 12926 . . . . . . . 8 ((𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁)) → 𝑛 ∈ (𝑀...𝑁))
3835, 36, 37syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...𝑁))
3938expr 460 . . . . . 6 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑛 ∈ (𝑀...𝑁)))
4039imim1d 82 . . . . 5 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛)) → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))))
41 eluzelz 12252 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
4235, 41syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ ℤ)
43 elfzuz3 12910 . . . . . . . . . 10 ((𝑛 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
4436, 43syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑁 ∈ (ℤ‘(𝑛 + 1)))
45 eluzp1m1 12267 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝑛 + 1))) → (𝑁 − 1) ∈ (ℤ𝑛))
4642, 44, 45syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝑁 − 1) ∈ (ℤ𝑛))
47 elfzuzb 12907 . . . . . . . 8 (𝑛 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑛 ∈ (ℤ𝑀) ∧ (𝑁 − 1) ∈ (ℤ𝑛)))
4835, 46, 47sylanbrc 586 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → 𝑛 ∈ (𝑀...(𝑁 − 1)))
49 monoordxrv.3 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
5049ralrimiva 3177 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
5150adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
52 fveq2 6663 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
53 fvoveq1 7174 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝑛 + 1)))
5452, 53breq12d 5066 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) ↔ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
5554rspcv 3604 . . . . . . 7 (𝑛 ∈ (𝑀...(𝑁 − 1)) → (∀𝑘 ∈ (𝑀...(𝑁 − 1))(𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))))
5648, 51, 55sylc 65 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1)))
5731adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑀) ∈ ℝ*)
5827adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ*)
5952eleq1d 2900 . . . . . . . . 9 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹𝑛) ∈ ℝ*))
6059rspcv 3604 . . . . . . . 8 (𝑛 ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹𝑛) ∈ ℝ*))
6138, 58, 60sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹𝑛) ∈ ℝ*)
62 fveq2 6663 . . . . . . . . . 10 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
6362eleq1d 2900 . . . . . . . . 9 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ ℝ* ↔ (𝐹‘(𝑛 + 1)) ∈ ℝ*))
6463rspcv 3604 . . . . . . . 8 ((𝑛 + 1) ∈ (𝑀...𝑁) → (∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) ∈ ℝ* → (𝐹‘(𝑛 + 1)) ∈ ℝ*))
6536, 58, 64sylc 65 . . . . . . 7 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (𝐹‘(𝑛 + 1)) ∈ ℝ*)
66 xrletr 12550 . . . . . . 7 (((𝐹𝑀) ∈ ℝ* ∧ (𝐹𝑛) ∈ ℝ* ∧ (𝐹‘(𝑛 + 1)) ∈ ℝ*) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6757, 61, 65, 66syl3anc 1368 . . . . . 6 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → (((𝐹𝑀) ≤ (𝐹𝑛) ∧ (𝐹𝑛) ≤ (𝐹‘(𝑛 + 1))) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6856, 67mpan2d 693 . . . . 5 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ (𝑛 + 1) ∈ (𝑀...𝑁))) → ((𝐹𝑀) ≤ (𝐹𝑛) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))
6940, 68animpimp2impd 843 . . . 4 (𝑛 ∈ (ℤ𝑀) → ((𝜑 → (𝑛 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑛))) → (𝜑 → ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹‘(𝑛 + 1))))))
708, 13, 18, 23, 34, 69uzind4 12305 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁))))
711, 70mpcom 38 . 2 (𝜑 → (𝑁 ∈ (𝑀...𝑁) → (𝐹𝑀) ≤ (𝐹𝑁)))
723, 71mpd 15 1 (𝜑 → (𝐹𝑀) ≤ (𝐹𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5053  cfv 6345  (class class class)co 7151  1c1 10538   + caddc 10540  *cxr 10674  cle 10676  cmin 10870  cz 11980  cuz 12242  ...cfz 12896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6137  df-ord 6183  df-on 6184  df-lim 6185  df-suc 6186  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7577  df-1st 7686  df-2nd 7687  df-wrecs 7945  df-recs 8006  df-rdg 8044  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11637  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12897
This theorem is referenced by:  monoordxr  42075  monoord2xrv  42076
  Copyright terms: Public domain W3C validator