MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Structured version   Visualization version   GIF version

Theorem rr19.3v 3617
Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 4444 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 262 . . . 4 (𝑦 = 𝑥 → (𝜑𝜑))
21rspcv 3568 . . 3 (𝑥𝐴 → (∀𝑦𝐴 𝜑𝜑))
32ralimia 3066 . 2 (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑥𝐴 𝜑)
4 ax-1 6 . . . 4 (𝜑 → (𝑦𝐴𝜑))
54ralrimiv 3123 . . 3 (𝜑 → ∀𝑦𝐴 𝜑)
65ralimi 3069 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑)
73, 6impbii 209 1 (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2111  wral 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048
This theorem is referenced by:  ispos2  18216
  Copyright terms: Public domain W3C validator