| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rr19.3v | Structured version Visualization version GIF version | ||
| Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 4481 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.) |
| Ref | Expression |
|---|---|
| rr19.3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
| 2 | 1 | rspcv 3602 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
| 3 | 2 | ralimia 3069 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
| 4 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝜑)) | |
| 5 | 4 | ralrimiv 3132 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝜑) |
| 6 | 5 | ralimi 3072 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
| 7 | 3, 6 | impbii 209 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2107 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 |
| This theorem is referenced by: ispos2 18336 |
| Copyright terms: Public domain | W3C validator |