Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Structured version   Visualization version   GIF version

Theorem rr19.3v 3564
 Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 4288 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 254 . . . 4 (𝑦 = 𝑥 → (𝜑𝜑))
21rspcv 3522 . . 3 (𝑥𝐴 → (∀𝑦𝐴 𝜑𝜑))
32ralimia 3159 . 2 (∀𝑥𝐴𝑦𝐴 𝜑 → ∀𝑥𝐴 𝜑)
4 ax-1 6 . . . 4 (𝜑 → (𝑦𝐴𝜑))
54ralrimiv 3174 . . 3 (𝜑 → ∀𝑦𝐴 𝜑)
65ralimi 3161 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴𝑦𝐴 𝜑)
73, 6impbii 201 1 (∀𝑥𝐴𝑦𝐴 𝜑 ↔ ∀𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 198   ∈ wcel 2164  ∀wral 3117 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-v 3416 This theorem is referenced by:  ispos2  17308
 Copyright terms: Public domain W3C validator