![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rr19.3v | Structured version Visualization version GIF version |
Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 4288 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.) |
Ref | Expression |
---|---|
rr19.3v | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 254 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜑)) | |
2 | 1 | rspcv 3522 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (∀𝑦 ∈ 𝐴 𝜑 → 𝜑)) |
3 | 2 | ralimia 3159 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑) |
4 | ax-1 6 | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐴 → 𝜑)) | |
5 | 4 | ralrimiv 3174 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 𝜑) |
6 | 5 | ralimi 3161 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑) |
7 | 3, 6 | impbii 201 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∈ wcel 2164 ∀wral 3117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-v 3416 |
This theorem is referenced by: ispos2 17308 |
Copyright terms: Public domain | W3C validator |