MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ispos2 Structured version   Visualization version   GIF version

Theorem ispos2 18264
Description: A poset is an antisymmetric proset.

EDITORIAL: could become the definition of poset. (Contributed by Stefan O'Rear, 1-Feb-2015.)

Hypotheses
Ref Expression
ispos2.b 𝐡 = (Baseβ€˜πΎ)
ispos2.l ≀ = (leβ€˜πΎ)
Assertion
Ref Expression
ispos2 (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
Distinct variable groups:   π‘₯,𝐾,𝑦   π‘₯,𝐡,𝑦   π‘₯, ≀ ,𝑦

Proof of Theorem ispos2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 3anan32 1097 . . . . . . 7 ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
21ralbii 3093 . . . . . 6 (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
3 r19.26 3111 . . . . . 6 (βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
42, 3bitri 274 . . . . 5 (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
542ralbii 3128 . . . 4 (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
6 r19.26-2 3138 . . . . 5 (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
7 rr19.3v 3656 . . . . . . 7 (βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ↔ βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
87ralbii 3093 . . . . . 6 (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ↔ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))
98anbi2i 623 . . . . 5 ((βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
106, 9bitri 274 . . . 4 (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 (βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘§ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
115, 10bitri 274 . . 3 (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ↔ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
1211anbi2i 623 . 2 ((𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))) ↔ (𝐾 ∈ V ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))))
13 ispos2.b . . 3 𝐡 = (Baseβ€˜πΎ)
14 ispos2.l . . 3 ≀ = (leβ€˜πΎ)
1513, 14ispos 18263 . 2 (𝐾 ∈ Poset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦) ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
1613, 14isprs 18246 . . . 4 (𝐾 ∈ Proset ↔ (𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))))
1716anbi1i 624 . . 3 ((𝐾 ∈ Proset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ ((𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
18 anass 469 . . 3 (((𝐾 ∈ V ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧))) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (𝐾 ∈ V ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))))
1917, 18bitri 274 . 2 ((𝐾 ∈ Proset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)) ↔ (𝐾 ∈ V ∧ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ 𝐡 (π‘₯ ≀ π‘₯ ∧ ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ 𝑧) β†’ π‘₯ ≀ 𝑧)) ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦))))
2012, 15, 193bitr4i 302 1 (𝐾 ∈ Poset ↔ (𝐾 ∈ Proset ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ ≀ 𝑦 ∧ 𝑦 ≀ π‘₯) β†’ π‘₯ = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   class class class wbr 5147  β€˜cfv 6540  Basecbs 17140  lecple 17200   Proset cproset 18242  Posetcpo 18256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548  df-proset 18244  df-poset 18262
This theorem is referenced by:  posprs  18265  postcposALT  47654  postc  47655
  Copyright terms: Public domain W3C validator