| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3065 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3049 |
| This theorem is referenced by: ralimiaa 3069 ralimi 3070 rr19.3v 3618 rr19.28v 3619 exfo 7047 ffvresb 7067 f1mpt 7204 weniso 7297 xpord2indlem 8086 ixpf 8854 ixpiunwdom 9487 tz9.12lem3 9693 dfac2a 10032 kmlem12 10064 axdc2lem 10350 ac6c4 10383 brdom6disj 10434 konigthlem 10470 arch 12389 cshw1 14736 serf0 15595 symgextfo 19342 baspartn 22889 ptcnplem 23556 spanuni 31545 lnopunilem1 32011 phpreu 37717 finixpnum 37718 poimirlem26 37759 indexa 37846 heiborlem5 37928 rngmgmbs4 38044 mzpincl 42891 dfac11 43219 mnurndlem1 44438 natlocalincr 47036 stgoldbwt 47938 2zrngnmlid2 48419 |
| Copyright terms: Public domain | W3C validator |