![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3084 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ral 3068 |
This theorem is referenced by: ralimiaa 3088 ralimi 3089 rr19.3v 3680 rr19.28v 3681 exfo 7139 ffvresb 7159 f1mpt 7298 weniso 7390 xpord2indlem 8188 ixpf 8978 ixpiunwdom 9659 tz9.12lem3 9858 dfac2a 10199 kmlem12 10231 axdc2lem 10517 ac6c4 10550 brdom6disj 10601 konigthlem 10637 arch 12550 cshw1 14870 serf0 15729 symgextfo 19464 baspartn 22982 ptcnplem 23650 spanuni 31576 lnopunilem1 32042 phpreu 37564 finixpnum 37565 poimirlem26 37606 indexa 37693 heiborlem5 37775 rngmgmbs4 37891 mzpincl 42690 dfac11 43019 mnurndlem1 44250 natlocalincr 46795 stgoldbwt 47650 2zrngnmlid2 47980 |
Copyright terms: Public domain | W3C validator |