MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimia Structured version   Visualization version   GIF version

Theorem ralimia 3081
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
Hypothesis
Ref Expression
ralimia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralimia (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)

Proof of Theorem ralimia
StepHypRef Expression
1 ralimia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21a2i 14 . 2 ((𝑥𝐴𝜑) → (𝑥𝐴𝜓))
32ralimi2 3079 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-ral 3063
This theorem is referenced by:  ralimiaa  3083  ralimi  3084  rr19.3v  3657  rr19.28v  3658  exfo  7104  ffvresb  7121  f1mpt  7257  weniso  7348  xpord2indlem  8130  ixpf  8911  ixpiunwdom  9582  tz9.12lem3  9781  dfac2a  10121  kmlem12  10153  axdc2lem  10440  ac6c4  10473  brdom6disj  10524  konigthlem  10560  arch  12466  cshw1  14769  serf0  15624  symgextfo  19285  baspartn  22449  ptcnplem  23117  spanuni  30785  lnopunilem1  31251  phpreu  36461  finixpnum  36462  poimirlem26  36503  indexa  36590  heiborlem5  36672  rngmgmbs4  36788  mzpincl  41458  dfac11  41790  mnurndlem1  43026  natlocalincr  45577  stgoldbwt  46431  2zrngnmlid2  46803
  Copyright terms: Public domain W3C validator