![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3130 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∀wral 3089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-ral 3094 |
This theorem is referenced by: ralimiaa 3132 ralimi 3133 r19.12 3244 rr19.3v 3535 rr19.28v 3536 exfo 6603 ffvresb 6620 f1mpt 6746 weniso 6832 ixpf 8170 ixpiunwdom 8738 tz9.12lem3 8902 dfac2a 9238 kmlem12 9271 axdc2lem 9558 ac6num 9589 ac6c4 9591 brdom6disj 9642 konigthlem 9678 arch 11577 cshw1 13907 serf0 14752 symgextfo 18154 baspartn 21087 ptcnplem 21753 spanuni 28928 lnopunilem1 29394 phpreu 33882 finixpnum 33883 poimirlem26 33924 indexa 34016 heiborlem5 34101 rngmgmbs4 34217 mzpincl 38079 dfac11 38413 stgoldbwt 42442 2zrngnmlid2 42746 |
Copyright terms: Public domain | W3C validator |