| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3061 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimiaa 3065 ralimi 3066 rr19.3v 3633 rr19.28v 3634 exfo 7077 ffvresb 7097 f1mpt 7236 weniso 7329 xpord2indlem 8126 ixpf 8893 ixpiunwdom 9543 tz9.12lem3 9742 dfac2a 10083 kmlem12 10115 axdc2lem 10401 ac6c4 10434 brdom6disj 10485 konigthlem 10521 arch 12439 cshw1 14787 serf0 15647 symgextfo 19352 baspartn 22841 ptcnplem 23508 spanuni 31473 lnopunilem1 31939 phpreu 37598 finixpnum 37599 poimirlem26 37640 indexa 37727 heiborlem5 37809 rngmgmbs4 37925 mzpincl 42722 dfac11 43051 mnurndlem1 44270 natlocalincr 46874 stgoldbwt 47777 2zrngnmlid2 48245 |
| Copyright terms: Public domain | W3C validator |