![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3075 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ral 3059 |
This theorem is referenced by: ralimiaa 3079 ralimi 3080 rr19.3v 3666 rr19.28v 3667 exfo 7124 ffvresb 7144 f1mpt 7280 weniso 7373 xpord2indlem 8170 ixpf 8958 ixpiunwdom 9627 tz9.12lem3 9826 dfac2a 10167 kmlem12 10199 axdc2lem 10485 ac6c4 10518 brdom6disj 10569 konigthlem 10605 arch 12520 cshw1 14856 serf0 15713 symgextfo 19454 baspartn 22976 ptcnplem 23644 spanuni 31572 lnopunilem1 32038 phpreu 37590 finixpnum 37591 poimirlem26 37632 indexa 37719 heiborlem5 37801 rngmgmbs4 37917 mzpincl 42721 dfac11 43050 mnurndlem1 44276 natlocalincr 46829 stgoldbwt 47700 2zrngnmlid2 48100 |
Copyright terms: Public domain | W3C validator |