Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3090 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 ∀wral 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 210 df-ral 3076 |
This theorem is referenced by: ralimiaa 3092 ralimi 3093 rr19.3v 3583 rr19.28v 3584 exfo 6869 ffvresb 6886 f1mpt 7018 weniso 7108 ixpf 8516 ixpiunwdom 9101 tz9.12lem3 9265 dfac2a 9603 kmlem12 9635 axdc2lem 9922 ac6c4 9955 brdom6disj 10006 konigthlem 10042 arch 11945 cshw1 14245 serf0 15099 symgextfo 18632 baspartn 21669 ptcnplem 22336 spanuni 29441 lnopunilem1 29907 xpord2ind 33363 xpord3ind 33369 phpreu 35357 finixpnum 35358 poimirlem26 35399 indexa 35487 heiborlem5 35569 rngmgmbs4 35685 mzpincl 40094 dfac11 40425 mnurndlem1 41408 stgoldbwt 44721 2zrngnmlid2 45002 |
Copyright terms: Public domain | W3C validator |