| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3068 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3052 |
| This theorem is referenced by: ralimiaa 3072 ralimi 3073 rr19.3v 3646 rr19.28v 3647 exfo 7095 ffvresb 7115 f1mpt 7254 weniso 7347 xpord2indlem 8146 ixpf 8934 ixpiunwdom 9604 tz9.12lem3 9803 dfac2a 10144 kmlem12 10176 axdc2lem 10462 ac6c4 10495 brdom6disj 10546 konigthlem 10582 arch 12498 cshw1 14840 serf0 15697 symgextfo 19403 baspartn 22892 ptcnplem 23559 spanuni 31525 lnopunilem1 31991 phpreu 37628 finixpnum 37629 poimirlem26 37670 indexa 37757 heiborlem5 37839 rngmgmbs4 37955 mzpincl 42757 dfac11 43086 mnurndlem1 44305 natlocalincr 46905 stgoldbwt 47790 2zrngnmlid2 48232 |
| Copyright terms: Public domain | W3C validator |