| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3064 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ral 3048 |
| This theorem is referenced by: ralimiaa 3068 ralimi 3069 rr19.3v 3617 rr19.28v 3618 exfo 7033 ffvresb 7053 f1mpt 7190 weniso 7283 xpord2indlem 8072 ixpf 8839 ixpiunwdom 9471 tz9.12lem3 9677 dfac2a 10016 kmlem12 10048 axdc2lem 10334 ac6c4 10367 brdom6disj 10418 konigthlem 10454 arch 12373 cshw1 14724 serf0 15583 symgextfo 19329 baspartn 22864 ptcnplem 23531 spanuni 31516 lnopunilem1 31982 phpreu 37644 finixpnum 37645 poimirlem26 37686 indexa 37773 heiborlem5 37855 rngmgmbs4 37971 mzpincl 42767 dfac11 43095 mnurndlem1 44314 natlocalincr 46914 stgoldbwt 47807 2zrngnmlid2 48288 |
| Copyright terms: Public domain | W3C validator |