| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3061 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimiaa 3065 ralimi 3066 rr19.3v 3624 rr19.28v 3625 exfo 7043 ffvresb 7063 f1mpt 7202 weniso 7295 xpord2indlem 8087 ixpf 8854 ixpiunwdom 9501 tz9.12lem3 9704 dfac2a 10043 kmlem12 10075 axdc2lem 10361 ac6c4 10394 brdom6disj 10445 konigthlem 10481 arch 12399 cshw1 14746 serf0 15606 symgextfo 19319 baspartn 22857 ptcnplem 23524 spanuni 31506 lnopunilem1 31972 phpreu 37586 finixpnum 37587 poimirlem26 37628 indexa 37715 heiborlem5 37797 rngmgmbs4 37913 mzpincl 42710 dfac11 43038 mnurndlem1 44257 natlocalincr 46861 stgoldbwt 47764 2zrngnmlid2 48245 |
| Copyright terms: Public domain | W3C validator |