| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3061 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3045 |
| This theorem is referenced by: ralimiaa 3065 ralimi 3066 rr19.3v 3630 rr19.28v 3631 exfo 7059 ffvresb 7079 f1mpt 7218 weniso 7311 xpord2indlem 8103 ixpf 8870 ixpiunwdom 9519 tz9.12lem3 9718 dfac2a 10059 kmlem12 10091 axdc2lem 10377 ac6c4 10410 brdom6disj 10461 konigthlem 10497 arch 12415 cshw1 14763 serf0 15623 symgextfo 19328 baspartn 22817 ptcnplem 23484 spanuni 31446 lnopunilem1 31912 phpreu 37571 finixpnum 37572 poimirlem26 37613 indexa 37700 heiborlem5 37782 rngmgmbs4 37898 mzpincl 42695 dfac11 43024 mnurndlem1 44243 natlocalincr 46847 stgoldbwt 47750 2zrngnmlid2 48218 |
| Copyright terms: Public domain | W3C validator |