Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3078 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-ral 3063 |
This theorem is referenced by: ralimiaa 3082 ralimi 3083 rr19.3v 3603 rr19.28v 3604 exfo 7013 ffvresb 7030 f1mpt 7166 weniso 7257 ixpf 8739 ixpiunwdom 9393 tz9.12lem3 9591 dfac2a 9931 kmlem12 9963 axdc2lem 10250 ac6c4 10283 brdom6disj 10334 konigthlem 10370 arch 12276 cshw1 14580 serf0 15437 symgextfo 19075 baspartn 22149 ptcnplem 22817 spanuni 29951 lnopunilem1 30417 xpord2ind 33839 xpord3ind 33845 phpreu 35805 finixpnum 35806 poimirlem26 35847 indexa 35935 heiborlem5 36017 rngmgmbs4 36133 mzpincl 40593 dfac11 40925 mnurndlem1 41937 stgoldbwt 45286 2zrngnmlid2 45567 natlocalincr 46569 |
Copyright terms: Public domain | W3C validator |