Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
Ref | Expression |
---|---|
ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
3 | 2 | ralimi2 3085 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-ral 3070 |
This theorem is referenced by: ralimiaa 3087 ralimi 3088 rr19.3v 3599 rr19.28v 3600 exfo 6975 ffvresb 6992 f1mpt 7128 weniso 7218 ixpf 8682 ixpiunwdom 9310 tz9.12lem3 9531 dfac2a 9869 kmlem12 9901 axdc2lem 10188 ac6c4 10221 brdom6disj 10272 konigthlem 10308 arch 12213 cshw1 14516 serf0 15373 symgextfo 19011 baspartn 22085 ptcnplem 22753 spanuni 29885 lnopunilem1 30351 xpord2ind 33773 xpord3ind 33779 phpreu 35740 finixpnum 35741 poimirlem26 35782 indexa 35870 heiborlem5 35952 rngmgmbs4 36068 mzpincl 40536 dfac11 40867 mnurndlem1 41852 stgoldbwt 45180 2zrngnmlid2 45461 |
Copyright terms: Public domain | W3C validator |