| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralimia | Structured version Visualization version GIF version | ||
| Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.) |
| Ref | Expression |
|---|---|
| ralimia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| ralimia | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) | |
| 2 | 1 | a2i 14 | . 2 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → 𝜓)) |
| 3 | 2 | ralimi2 3062 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ral 3046 |
| This theorem is referenced by: ralimiaa 3066 ralimi 3067 rr19.3v 3636 rr19.28v 3637 exfo 7080 ffvresb 7100 f1mpt 7239 weniso 7332 xpord2indlem 8129 ixpf 8896 ixpiunwdom 9550 tz9.12lem3 9749 dfac2a 10090 kmlem12 10122 axdc2lem 10408 ac6c4 10441 brdom6disj 10492 konigthlem 10528 arch 12446 cshw1 14794 serf0 15654 symgextfo 19359 baspartn 22848 ptcnplem 23515 spanuni 31480 lnopunilem1 31946 phpreu 37605 finixpnum 37606 poimirlem26 37647 indexa 37734 heiborlem5 37816 rngmgmbs4 37932 mzpincl 42729 dfac11 43058 mnurndlem1 44277 natlocalincr 46881 stgoldbwt 47781 2zrngnmlid2 48249 |
| Copyright terms: Public domain | W3C validator |