![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr2sscn2 | Structured version Visualization version GIF version |
Description: The cartesian square of ℝ is a subset of the cartesian square of ℂ. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
rr2sscn2 | ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 11167 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | xpss12 5692 | . 2 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
3 | 1, 1, 2 | mp2an 691 | 1 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3949 × cxp 5675 ℂcc 11108 ℝcr 11109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-resscn 11167 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-opab 5212 df-xp 5683 |
This theorem is referenced by: ovolval2lem 45359 ovolval2 45360 ovolval3 45363 |
Copyright terms: Public domain | W3C validator |