Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr2sscn2 Structured version   Visualization version   GIF version

Theorem rr2sscn2 44076
Description: The cartesian square of is a subset of the cartesian square of . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
rr2sscn2 (ℝ × ℝ) ⊆ (ℂ × ℂ)

Proof of Theorem rr2sscn2
StepHypRef Expression
1 ax-resscn 11167 . 2 ℝ ⊆ ℂ
2 xpss12 5692 . 2 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
31, 1, 2mp2an 691 1 (ℝ × ℝ) ⊆ (ℂ × ℂ)
Colors of variables: wff setvar class
Syntax hints:  wss 3949   × cxp 5675  cc 11108  cr 11109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-resscn 11167
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-opab 5212  df-xp 5683
This theorem is referenced by:  ovolval2lem  45359  ovolval2  45360  ovolval3  45363
  Copyright terms: Public domain W3C validator