Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr2sscn2 Structured version   Visualization version   GIF version

Theorem rr2sscn2 45404
Description: The cartesian square of is a subset of the cartesian square of . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
rr2sscn2 (ℝ × ℝ) ⊆ (ℂ × ℂ)

Proof of Theorem rr2sscn2
StepHypRef Expression
1 ax-resscn 11058 . 2 ℝ ⊆ ℂ
2 xpss12 5626 . 2 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
31, 1, 2mp2an 692 1 (ℝ × ℝ) ⊆ (ℂ × ℂ)
Colors of variables: wff setvar class
Syntax hints:  wss 3897   × cxp 5609  cc 10999  cr 11000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-resscn 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3914  df-opab 5149  df-xp 5617
This theorem is referenced by:  ovolval2lem  46681  ovolval2  46682  ovolval3  46685
  Copyright terms: Public domain W3C validator