Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rr2sscn2 Structured version   Visualization version   GIF version

Theorem rr2sscn2 45335
Description: The cartesian square of is a subset of the cartesian square of . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Assertion
Ref Expression
rr2sscn2 (ℝ × ℝ) ⊆ (ℂ × ℂ)

Proof of Theorem rr2sscn2
StepHypRef Expression
1 ax-resscn 11101 . 2 ℝ ⊆ ℂ
2 xpss12 5646 . 2 ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
31, 1, 2mp2an 692 1 (ℝ × ℝ) ⊆ (ℂ × ℂ)
Colors of variables: wff setvar class
Syntax hints:  wss 3911   × cxp 5629  cc 11042  cr 11043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-resscn 11101
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3928  df-opab 5165  df-xp 5637
This theorem is referenced by:  ovolval2lem  46614  ovolval2  46615  ovolval3  46618
  Copyright terms: Public domain W3C validator