![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rr2sscn2 | Structured version Visualization version GIF version |
Description: The cartesian square of ℝ is a subset of the cartesian square of ℂ. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
rr2sscn2 | ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 11241 | . 2 ⊢ ℝ ⊆ ℂ | |
2 | xpss12 5715 | . 2 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
3 | 1, 1, 2 | mp2an 691 | 1 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 × cxp 5698 ℂcc 11182 ℝcr 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-resscn 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-opab 5229 df-xp 5706 |
This theorem is referenced by: ovolval2lem 46564 ovolval2 46565 ovolval3 46568 |
Copyright terms: Public domain | W3C validator |