| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rr2sscn2 | Structured version Visualization version GIF version | ||
| Description: The cartesian square of ℝ is a subset of the cartesian square of ℂ. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| rr2sscn2 | ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11179 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | xpss12 5667 | . 2 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3924 × cxp 5650 ℂcc 11120 ℝcr 11121 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-resscn 11179 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ss 3941 df-opab 5180 df-xp 5658 |
| This theorem is referenced by: ovolval2lem 46608 ovolval2 46609 ovolval3 46612 |
| Copyright terms: Public domain | W3C validator |