| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rr2sscn2 | Structured version Visualization version GIF version | ||
| Description: The cartesian square of ℝ is a subset of the cartesian square of ℂ. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| rr2sscn2 | ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 11058 | . 2 ⊢ ℝ ⊆ ℂ | |
| 2 | xpss12 5626 | . 2 ⊢ ((ℝ ⊆ ℂ ∧ ℝ ⊆ ℂ) → (ℝ × ℝ) ⊆ (ℂ × ℂ)) | |
| 3 | 1, 1, 2 | mp2an 692 | 1 ⊢ (ℝ × ℝ) ⊆ (ℂ × ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 × cxp 5609 ℂcc 10999 ℝcr 11000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-resscn 11058 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: ovolval2lem 46681 ovolval2 46682 ovolval3 46685 |
| Copyright terms: Public domain | W3C validator |