| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovolval3.a | . . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 2 |  | eqid 2736 | . . 3
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} | 
| 3 | 1, 2 | ovolval2 46664 | . 2
⊢ (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, <
)) | 
| 4 |  | ovolval3.m | . . . . 5
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))} | 
| 5 |  | reex 11247 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℝ
∈ V | 
| 6 | 5, 5 | xpex 7774 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (ℝ
× ℝ) ∈ V | 
| 7 |  | inss2 4237 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) | 
| 8 |  | mapss 8930 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ ×
ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ⊆ ((ℝ ×
ℝ) ↑m ℕ)) | 
| 9 | 6, 7, 8 | mp2an 692 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ
× ℝ) ↑m ℕ) | 
| 10 | 9 | sseli 3978 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) | 
| 11 |  | elmapi 8890 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) | 
| 13 | 12 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) ∈ (ℝ ×
ℝ)) | 
| 14 |  | 1st2nd2 8054 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑓‘𝑛) ∈ (ℝ × ℝ) →
(𝑓‘𝑛) = 〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) | 
| 15 | 13, 14 | syl 17 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) = 〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) | 
| 16 | 15 | fveq2d 6909 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓‘𝑛)) = ((,)‘〈(1st
‘(𝑓‘𝑛)), (2nd
‘(𝑓‘𝑛))〉)) | 
| 17 |  | df-ov 7435 | . . . . . . . . . . . . . . . . . 18
⊢
((1st ‘(𝑓‘𝑛))(,)(2nd ‘(𝑓‘𝑛))) = ((,)‘〈(1st
‘(𝑓‘𝑛)), (2nd
‘(𝑓‘𝑛))〉) | 
| 18 | 17 | eqcomi 2745 | . . . . . . . . . . . . . . . . 17
⊢
((,)‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) = ((1st ‘(𝑓‘𝑛))(,)(2nd ‘(𝑓‘𝑛))) | 
| 19 | 18 | a1i 11 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
((,)‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) = ((1st ‘(𝑓‘𝑛))(,)(2nd ‘(𝑓‘𝑛)))) | 
| 20 | 16, 19 | eqtrd 2776 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓‘𝑛)) = ((1st ‘(𝑓‘𝑛))(,)(2nd ‘(𝑓‘𝑛)))) | 
| 21 | 20 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
(vol‘((,)‘(𝑓‘𝑛))) = (vol‘((1st
‘(𝑓‘𝑛))(,)(2nd
‘(𝑓‘𝑛))))) | 
| 22 |  | xp1st 8047 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑛) ∈ (ℝ × ℝ) →
(1st ‘(𝑓‘𝑛)) ∈ ℝ) | 
| 23 | 13, 22 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝑓‘𝑛)) ∈
ℝ) | 
| 24 |  | xp2nd 8048 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓‘𝑛) ∈ (ℝ × ℝ) →
(2nd ‘(𝑓‘𝑛)) ∈ ℝ) | 
| 25 | 13, 24 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝑓‘𝑛)) ∈
ℝ) | 
| 26 |  | elmapi 8890 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) | 
| 27 | 26 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ ×
ℝ))) | 
| 28 |  | simpr 484 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ) | 
| 29 |  | ovolfcl 25502 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑓:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝑓‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝑓‘𝑛)) ∈ ℝ ∧ (1st
‘(𝑓‘𝑛)) ≤ (2nd
‘(𝑓‘𝑛)))) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝑓‘𝑛)) ∈ ℝ ∧
(2nd ‘(𝑓‘𝑛)) ∈ ℝ ∧ (1st
‘(𝑓‘𝑛)) ≤ (2nd
‘(𝑓‘𝑛)))) | 
| 31 | 30 | simp3d 1144 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝑓‘𝑛)) ≤ (2nd
‘(𝑓‘𝑛))) | 
| 32 |  | volioo 25605 | . . . . . . . . . . . . . . 15
⊢
(((1st ‘(𝑓‘𝑛)) ∈ ℝ ∧ (2nd
‘(𝑓‘𝑛)) ∈ ℝ ∧
(1st ‘(𝑓‘𝑛)) ≤ (2nd ‘(𝑓‘𝑛))) → (vol‘((1st
‘(𝑓‘𝑛))(,)(2nd
‘(𝑓‘𝑛)))) = ((2nd
‘(𝑓‘𝑛)) − (1st
‘(𝑓‘𝑛)))) | 
| 33 | 23, 25, 31, 32 | syl3anc 1372 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
(vol‘((1st ‘(𝑓‘𝑛))(,)(2nd ‘(𝑓‘𝑛)))) = ((2nd ‘(𝑓‘𝑛)) − (1st ‘(𝑓‘𝑛)))) | 
| 34 | 21, 33 | eqtrd 2776 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
(vol‘((,)‘(𝑓‘𝑛))) = ((2nd ‘(𝑓‘𝑛)) − (1st ‘(𝑓‘𝑛)))) | 
| 35 |  | ioof 13488 | . . . . . . . . . . . . . . . 16
⊢
(,):(ℝ* × ℝ*)⟶𝒫
ℝ | 
| 36 |  | ffun 6738 | . . . . . . . . . . . . . . . 16
⊢
((,):(ℝ* × ℝ*)⟶𝒫
ℝ → Fun (,)) | 
| 37 | 35, 36 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢ Fun
(,) | 
| 38 | 37 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → Fun
(,)) | 
| 39 |  | rexpssxrxp 11307 | . . . . . . . . . . . . . . . 16
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) | 
| 40 | 39, 13 | sselid 3980 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) ∈ (ℝ* ×
ℝ*)) | 
| 41 | 35 | fdmi 6746 | . . . . . . . . . . . . . . . . 17
⊢ dom (,) =
(ℝ* × ℝ*) | 
| 42 | 41 | eqcomi 2745 | . . . . . . . . . . . . . . . 16
⊢
(ℝ* × ℝ*) = dom
(,) | 
| 43 | 42 | a1i 11 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (ℝ*
× ℝ*) = dom (,)) | 
| 44 | 40, 43 | eleqtrd 2842 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓‘𝑛) ∈ dom (,)) | 
| 45 |  | fvco 7006 | . . . . . . . . . . . . . 14
⊢ ((Fun (,)
∧ (𝑓‘𝑛) ∈ dom (,)) → ((vol
∘ (,))‘(𝑓‘𝑛)) = (vol‘((,)‘(𝑓‘𝑛)))) | 
| 46 | 38, 44, 45 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘
(,))‘(𝑓‘𝑛)) =
(vol‘((,)‘(𝑓‘𝑛)))) | 
| 47 | 15 | fveq2d 6909 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ −
)‘(𝑓‘𝑛)) = ((abs ∘ −
)‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉)) | 
| 48 |  | df-ov 7435 | . . . . . . . . . . . . . . . 16
⊢
((1st ‘(𝑓‘𝑛))(abs ∘ − )(2nd
‘(𝑓‘𝑛))) = ((abs ∘ −
)‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) | 
| 49 | 48 | eqcomi 2745 | . . . . . . . . . . . . . . 15
⊢ ((abs
∘ − )‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) = ((1st ‘(𝑓‘𝑛))(abs ∘ − )(2nd
‘(𝑓‘𝑛))) | 
| 50 | 49 | a1i 11 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ −
)‘〈(1st ‘(𝑓‘𝑛)), (2nd ‘(𝑓‘𝑛))〉) = ((1st ‘(𝑓‘𝑛))(abs ∘ − )(2nd
‘(𝑓‘𝑛)))) | 
| 51 | 23 | recnd 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st
‘(𝑓‘𝑛)) ∈
ℂ) | 
| 52 | 25 | recnd 11290 | . . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd
‘(𝑓‘𝑛)) ∈
ℂ) | 
| 53 |  | eqid 2736 | . . . . . . . . . . . . . . . . 17
⊢ (abs
∘ − ) = (abs ∘ − ) | 
| 54 | 53 | cnmetdval 24792 | . . . . . . . . . . . . . . . 16
⊢
(((1st ‘(𝑓‘𝑛)) ∈ ℂ ∧ (2nd
‘(𝑓‘𝑛)) ∈ ℂ) →
((1st ‘(𝑓‘𝑛))(abs ∘ − )(2nd
‘(𝑓‘𝑛))) =
(abs‘((1st ‘(𝑓‘𝑛)) − (2nd ‘(𝑓‘𝑛))))) | 
| 55 | 51, 52, 54 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝑓‘𝑛))(abs ∘ −
)(2nd ‘(𝑓‘𝑛))) = (abs‘((1st
‘(𝑓‘𝑛)) − (2nd
‘(𝑓‘𝑛))))) | 
| 56 |  | abssub 15366 | . . . . . . . . . . . . . . . 16
⊢
(((1st ‘(𝑓‘𝑛)) ∈ ℂ ∧ (2nd
‘(𝑓‘𝑛)) ∈ ℂ) →
(abs‘((1st ‘(𝑓‘𝑛)) − (2nd ‘(𝑓‘𝑛)))) = (abs‘((2nd
‘(𝑓‘𝑛)) − (1st
‘(𝑓‘𝑛))))) | 
| 57 | 51, 52, 56 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
(abs‘((1st ‘(𝑓‘𝑛)) − (2nd ‘(𝑓‘𝑛)))) = (abs‘((2nd
‘(𝑓‘𝑛)) − (1st
‘(𝑓‘𝑛))))) | 
| 58 | 23, 25, 31 | abssubge0d 15471 | . . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) →
(abs‘((2nd ‘(𝑓‘𝑛)) − (1st ‘(𝑓‘𝑛)))) = ((2nd ‘(𝑓‘𝑛)) − (1st ‘(𝑓‘𝑛)))) | 
| 59 | 55, 57, 58 | 3eqtrd 2780 | . . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st
‘(𝑓‘𝑛))(abs ∘ −
)(2nd ‘(𝑓‘𝑛))) = ((2nd ‘(𝑓‘𝑛)) − (1st ‘(𝑓‘𝑛)))) | 
| 60 | 47, 50, 59 | 3eqtrd 2780 | . . . . . . . . . . . . 13
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ −
)‘(𝑓‘𝑛)) = ((2nd
‘(𝑓‘𝑛)) − (1st
‘(𝑓‘𝑛)))) | 
| 61 | 34, 46, 60 | 3eqtr4d 2786 | . . . . . . . . . . . 12
⊢ ((𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘
(,))‘(𝑓‘𝑛)) = ((abs ∘ −
)‘(𝑓‘𝑛))) | 
| 62 | 61 | mpteq2dva 5241 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ((vol ∘
(,))‘(𝑓‘𝑛))) = (𝑛 ∈ ℕ ↦ ((abs ∘ −
)‘(𝑓‘𝑛)))) | 
| 63 |  | volioof 46007 | . . . . . . . . . . . . 13
⊢ (vol
∘ (,)):(ℝ* ×
ℝ*)⟶(0[,]+∞) | 
| 64 | 63 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (vol ∘
(,)):(ℝ* ×
ℝ*)⟶(0[,]+∞)) | 
| 65 | 39 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (ℝ × ℝ)
⊆ (ℝ* × ℝ*)) | 
| 66 | 12, 65 | fssd 6752 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* ×
ℝ*)) | 
| 67 |  | fcompt 7152 | . . . . . . . . . . . 12
⊢ (((vol
∘ (,)):(ℝ* ×
ℝ*)⟶(0[,]+∞) ∧ 𝑓:ℕ⟶(ℝ* ×
ℝ*)) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘
(,))‘(𝑓‘𝑛)))) | 
| 68 | 64, 66, 67 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘
𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘
(,))‘(𝑓‘𝑛)))) | 
| 69 |  | absf 15377 | . . . . . . . . . . . . . 14
⊢
abs:ℂ⟶ℝ | 
| 70 |  | subf 11511 | . . . . . . . . . . . . . 14
⊢  −
:(ℂ × ℂ)⟶ℂ | 
| 71 |  | fco 6759 | . . . . . . . . . . . . . 14
⊢
((abs:ℂ⟶ℝ ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶ℝ) | 
| 72 | 69, 70, 71 | mp2an 692 | . . . . . . . . . . . . 13
⊢ (abs
∘ − ):(ℂ × ℂ)⟶ℝ | 
| 73 | 72 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (abs ∘ −
):(ℂ × ℂ)⟶ℝ) | 
| 74 |  | rr2sscn2 45382 | . . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ⊆ (ℂ × ℂ) | 
| 75 | 74 | a1i 11 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (ℝ × ℝ)
⊆ (ℂ × ℂ)) | 
| 76 | 12, 75 | fssd 6752 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℂ ×
ℂ)) | 
| 77 |  | fcompt 7152 | . . . . . . . . . . . 12
⊢ (((abs
∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ ×
ℂ)) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ −
)‘(𝑓‘𝑛)))) | 
| 78 | 73, 76, 77 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((abs ∘ − )
∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs
∘ − )‘(𝑓‘𝑛)))) | 
| 79 | 62, 68, 78 | 3eqtr4d 2786 | . . . . . . . . . 10
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘
𝑓) = ((abs ∘ −
) ∘ 𝑓)) | 
| 80 | 79 | fveq2d 6909 | . . . . . . . . 9
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) →
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) =
(Σ^‘((abs ∘ − ) ∘ 𝑓))) | 
| 81 | 80 | eqeq2d 2747 | . . . . . . . 8
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))) | 
| 82 | 81 | anbi2d 630 | . . . . . . 7
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓))))) | 
| 83 | 82 | rexbiia 3091 | . . . . . 6
⊢
(∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))) | 
| 84 | 83 | rabbii 3441 | . . . . 5
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} | 
| 85 | 4, 84 | eqtr2i 2765 | . . . 4
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀 | 
| 86 | 85 | infeq1i 9519 | . . 3
⊢
inf({𝑦 ∈
ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, <
) = inf(𝑀,
ℝ*, < ) | 
| 87 | 86 | a1i 11 | . 2
⊢ (𝜑 → inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, <
) = inf(𝑀,
ℝ*, < )) | 
| 88 | 3, 87 | eqtrd 2776 | 1
⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, <
)) |