Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval3 Structured version   Visualization version   GIF version

Theorem ovolval3 46628
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and vol ∘ (,). See ovolval 25372 and ovolval2 46625 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval3.a (𝜑𝐴 ⊆ ℝ)
ovolval3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval3 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ovolval3.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqid 2729 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
31, 2ovolval2 46625 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ))
4 ovolval3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
5 reex 11100 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ V
65, 5xpex 7689 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ∈ V
7 inss2 4189 . . . . . . . . . . . . . . . . . . . . . 22 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
8 mapss 8816 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
96, 7, 8mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
109sseli 3931 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
11 elmapi 8776 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1210, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1312ffvelcdmda 7018 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
14 1st2nd2 7963 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑛) ∈ (ℝ × ℝ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1615fveq2d 6826 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
17 df-ov 7352 . . . . . . . . . . . . . . . . . 18 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1817eqcomi 2738 . . . . . . . . . . . . . . . . 17 ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))
1918a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2016, 19eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2120fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))))
22 xp1st 7956 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
2313, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
24 xp2nd 7957 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2513, 24syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
26 elmapi 8776 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2726adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
29 ovolfcl 25365 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3027, 28, 29syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3130simp3d 1144 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)))
32 volioo 25468 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3323, 25, 31, 32syl3anc 1373 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3421, 33eqtrd 2764 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
35 ioof 13350 . . . . . . . . . . . . . . . 16 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
36 ffun 6655 . . . . . . . . . . . . . . . 16 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3735, 36ax-mp 5 . . . . . . . . . . . . . . 15 Fun (,)
3837a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → Fun (,))
39 rexpssxrxp 11160 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4039, 13sselid 3933 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ* × ℝ*))
4135fdmi 6663 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
4241eqcomi 2738 . . . . . . . . . . . . . . . 16 (ℝ* × ℝ*) = dom (,)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (ℝ* × ℝ*) = dom (,))
4440, 43eleqtrd 2830 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom (,))
45 fvco 6921 . . . . . . . . . . . . . 14 ((Fun (,) ∧ (𝑓𝑛) ∈ dom (,)) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4638, 44, 45syl2anc 584 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4715fveq2d 6826 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
48 df-ov 7352 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
4948eqcomi 2738 . . . . . . . . . . . . . . 15 ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛)))
5049a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))))
5123recnd 11143 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℂ)
5225recnd 11143 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℂ)
53 eqid 2729 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
5453cnmetdval 24656 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
5551, 52, 54syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
56 abssub 15234 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5751, 52, 56syl2anc 584 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5823, 25, 31abssubge0d 15341 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
5955, 57, 583eqtrd 2768 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6047, 50, 593eqtrd 2768 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6134, 46, 603eqtr4d 2774 . . . . . . . . . . . 12 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = ((abs ∘ − )‘(𝑓𝑛)))
6261mpteq2dva 5185 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
63 volioof 45968 . . . . . . . . . . . . 13 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
6463a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
6539a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6612, 65fssd 6669 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
67 fcompt 7067 . . . . . . . . . . . 12 (((vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
6864, 66, 67syl2anc 584 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
69 absf 15245 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
70 subf 11365 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
71 fco 6676 . . . . . . . . . . . . . 14 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7269, 70, 71mp2an 692 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7372a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
74 rr2sscn2 45345 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℂ × ℂ)
7574a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
7612, 75fssd 6669 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℂ × ℂ))
77 fcompt 7067 . . . . . . . . . . . 12 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7873, 76, 77syl2anc 584 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7962, 68, 783eqtr4d 2774 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓))
8079fveq2d 6826 . . . . . . . . 9 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((abs ∘ − ) ∘ 𝑓)))
8180eqeq2d 2740 . . . . . . . 8 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8281anbi2d 630 . . . . . . 7 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
8382rexbiia 3074 . . . . . 6 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8483rabbii 3400 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
854, 84eqtr2i 2753 . . . 4 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀
8685infeq1i 9369 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
8786a1i 11 . 2 (𝜑 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
883, 87eqtrd 2764 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  𝒫 cpw 4551  cop 4583   cuni 4858   class class class wbr 5092  cmpt 5173   × cxp 5617  dom cdm 5619  ran crn 5620  ccom 5623  Fun wfun 6476  wf 6478  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  m cmap 8753  infcinf 9331  cc 11007  cr 11008  0cc0 11009  +∞cpnf 11146  *cxr 11148   < clt 11149  cle 11150  cmin 11347  cn 12128  (,)cioo 13248  [,]cicc 13251  abscabs 15141  vol*covol 25361  volcvol 25362  Σ^csumge0 46343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831  df-cmp 23272  df-ovol 25363  df-vol 25364  df-sumge0 46344
This theorem is referenced by:  ovolval4lem2  46631
  Copyright terms: Public domain W3C validator