Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval3 Structured version   Visualization version   GIF version

Theorem ovolval3 43750
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^ and vol ∘ (,). See ovolval 24228 and ovolval2 43747 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval3.a (𝜑𝐴 ⊆ ℝ)
ovolval3.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval3 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ovolval3.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqid 2739 . . 3 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
31, 2ovolval2 43747 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ))
4 ovolval3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))}
5 reex 10709 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ V
65, 5xpex 7497 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ × ℝ) ∈ V
7 inss2 4121 . . . . . . . . . . . . . . . . . . . . . 22 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
8 mapss 8502 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
96, 7, 8mp2an 692 . . . . . . . . . . . . . . . . . . . . 21 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
109sseli 3874 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
11 elmapi 8462 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1210, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
1312ffvelrnda 6864 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ × ℝ))
14 1st2nd2 7756 . . . . . . . . . . . . . . . . . 18 ((𝑓𝑛) ∈ (ℝ × ℝ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) = ⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1615fveq2d 6681 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
17 df-ov 7176 . . . . . . . . . . . . . . . . . 18 ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))) = ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
1817eqcomi 2748 . . . . . . . . . . . . . . . . 17 ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))
1918a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2016, 19eqtrd 2774 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((,)‘(𝑓𝑛)) = ((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛))))
2120fveq2d 6681 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))))
22 xp1st 7749 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
2313, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℝ)
24 xp2nd 7750 . . . . . . . . . . . . . . . 16 ((𝑓𝑛) ∈ (ℝ × ℝ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
2513, 24syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℝ)
26 elmapi 8462 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
2726adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
28 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ)
29 ovolfcl 24221 . . . . . . . . . . . . . . . . 17 ((𝑓:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3027, 28, 29syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))))
3130simp3d 1145 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛)))
32 volioo 24324 . . . . . . . . . . . . . . 15 (((1st ‘(𝑓𝑛)) ∈ ℝ ∧ (2nd ‘(𝑓𝑛)) ∈ ℝ ∧ (1st ‘(𝑓𝑛)) ≤ (2nd ‘(𝑓𝑛))) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3323, 25, 31, 32syl3anc 1372 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((1st ‘(𝑓𝑛))(,)(2nd ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
3421, 33eqtrd 2774 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (vol‘((,)‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
35 ioof 12924 . . . . . . . . . . . . . . . 16 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
36 ffun 6508 . . . . . . . . . . . . . . . 16 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → Fun (,))
3735, 36ax-mp 5 . . . . . . . . . . . . . . 15 Fun (,)
3837a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → Fun (,))
39 rexpssxrxp 10767 . . . . . . . . . . . . . . . 16 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4039, 13sseldi 3876 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (ℝ* × ℝ*))
4135fdmi 6517 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* × ℝ*)
4241eqcomi 2748 . . . . . . . . . . . . . . . 16 (ℝ* × ℝ*) = dom (,)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (ℝ* × ℝ*) = dom (,))
4440, 43eleqtrd 2836 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ dom (,))
45 fvco 6769 . . . . . . . . . . . . . 14 ((Fun (,) ∧ (𝑓𝑛) ∈ dom (,)) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4638, 44, 45syl2anc 587 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = (vol‘((,)‘(𝑓𝑛))))
4715fveq2d 6681 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩))
48 df-ov 7176 . . . . . . . . . . . . . . . 16 ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩)
4948eqcomi 2748 . . . . . . . . . . . . . . 15 ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛)))
5049a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝑓𝑛)), (2nd ‘(𝑓𝑛))⟩) = ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))))
5123recnd 10750 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (1st ‘(𝑓𝑛)) ∈ ℂ)
5225recnd 10750 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (2nd ‘(𝑓𝑛)) ∈ ℂ)
53 eqid 2739 . . . . . . . . . . . . . . . . 17 (abs ∘ − ) = (abs ∘ − )
5453cnmetdval 23526 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
5551, 52, 54syl2anc 587 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))))
56 abssub 14779 . . . . . . . . . . . . . . . 16 (((1st ‘(𝑓𝑛)) ∈ ℂ ∧ (2nd ‘(𝑓𝑛)) ∈ ℂ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5751, 52, 56syl2anc 587 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((1st ‘(𝑓𝑛)) − (2nd ‘(𝑓𝑛)))) = (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))))
5823, 25, 31abssubge0d 14884 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → (abs‘((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛)))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
5955, 57, 583eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((1st ‘(𝑓𝑛))(abs ∘ − )(2nd ‘(𝑓𝑛))) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6047, 50, 593eqtrd 2778 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((abs ∘ − )‘(𝑓𝑛)) = ((2nd ‘(𝑓𝑛)) − (1st ‘(𝑓𝑛))))
6134, 46, 603eqtr4d 2784 . . . . . . . . . . . 12 ((𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ∧ 𝑛 ∈ ℕ) → ((vol ∘ (,))‘(𝑓𝑛)) = ((abs ∘ − )‘(𝑓𝑛)))
6261mpteq2dva 5126 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
63 volioof 43093 . . . . . . . . . . . . 13 (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞)
6463a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞))
6539a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℝ* × ℝ*))
6612, 65fssd 6523 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ* × ℝ*))
67 fcompt 6908 . . . . . . . . . . . 12 (((vol ∘ (,)):(ℝ* × ℝ*)⟶(0[,]+∞) ∧ 𝑓:ℕ⟶(ℝ* × ℝ*)) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
6864, 66, 67syl2anc 587 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((vol ∘ (,))‘(𝑓𝑛))))
69 absf 14790 . . . . . . . . . . . . . 14 abs:ℂ⟶ℝ
70 subf 10969 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
71 fco 6529 . . . . . . . . . . . . . 14 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
7269, 70, 71mp2an 692 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
7372a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
74 rr2sscn2 42466 . . . . . . . . . . . . . 14 (ℝ × ℝ) ⊆ (ℂ × ℂ)
7574a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
7612, 75fssd 6523 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℂ × ℂ))
77 fcompt 6908 . . . . . . . . . . . 12 (((abs ∘ − ):(ℂ × ℂ)⟶ℝ ∧ 𝑓:ℕ⟶(ℂ × ℂ)) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7873, 76, 77syl2anc 587 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((abs ∘ − ) ∘ 𝑓) = (𝑛 ∈ ℕ ↦ ((abs ∘ − )‘(𝑓𝑛))))
7962, 68, 783eqtr4d 2784 . . . . . . . . . 10 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((vol ∘ (,)) ∘ 𝑓) = ((abs ∘ − ) ∘ 𝑓))
8079fveq2d 6681 . . . . . . . . 9 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (Σ^‘((vol ∘ (,)) ∘ 𝑓)) = (Σ^‘((abs ∘ − ) ∘ 𝑓)))
8180eqeq2d 2750 . . . . . . . 8 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8281anbi2d 632 . . . . . . 7 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
8382rexbiia 3161 . . . . . 6 (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓))) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
8483rabbii 3375 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
854, 84eqtr2i 2763 . . . 4 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀
8685infeq1i 9018 . . 3 inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
8786a1i 11 . 2 (𝜑 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
883, 87eqtrd 2774 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wrex 3055  {crab 3058  Vcvv 3399  cin 3843  wss 3844  𝒫 cpw 4489  cop 4523   cuni 4797   class class class wbr 5031  cmpt 5111   × cxp 5524  dom cdm 5526  ran crn 5527  ccom 5530  Fun wfun 6334  wf 6336  cfv 6340  (class class class)co 7173  1st c1st 7715  2nd c2nd 7716  m cmap 8440  infcinf 8981  cc 10616  cr 10617  0cc0 10618  +∞cpnf 10753  *cxr 10755   < clt 10756  cle 10757  cmin 10951  cn 11719  (,)cioo 12824  [,]cicc 12827  abscabs 14686  vol*covol 24217  volcvol 24218  Σ^csumge0 43465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482  ax-inf2 9180  ax-cnex 10674  ax-resscn 10675  ax-1cn 10676  ax-icn 10677  ax-addcl 10678  ax-addrcl 10679  ax-mulcl 10680  ax-mulrcl 10681  ax-mulcom 10682  ax-addass 10683  ax-mulass 10684  ax-distr 10685  ax-i2m1 10686  ax-1ne0 10687  ax-1rid 10688  ax-rnegex 10689  ax-rrecex 10690  ax-cnre 10691  ax-pre-lttri 10692  ax-pre-lttrn 10693  ax-pre-ltadd 10694  ax-pre-mulgt0 10695  ax-pre-sup 10696
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-tp 4522  df-op 4524  df-uni 4798  df-int 4838  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-se 5485  df-we 5486  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7130  df-ov 7176  df-oprab 7177  df-mpo 7178  df-of 7428  df-om 7603  df-1st 7717  df-2nd 7718  df-wrecs 7979  df-recs 8040  df-rdg 8078  df-1o 8134  df-2o 8135  df-er 8323  df-map 8442  df-pm 8443  df-en 8559  df-dom 8560  df-sdom 8561  df-fin 8562  df-fi 8951  df-sup 8982  df-inf 8983  df-oi 9050  df-dju 9406  df-card 9444  df-pnf 10758  df-mnf 10759  df-xr 10760  df-ltxr 10761  df-le 10762  df-sub 10953  df-neg 10954  df-div 11379  df-nn 11720  df-2 11782  df-3 11783  df-n0 11980  df-z 12066  df-uz 12328  df-q 12434  df-rp 12476  df-xneg 12593  df-xadd 12594  df-xmul 12595  df-ioo 12828  df-ico 12830  df-icc 12831  df-fz 12985  df-fzo 13128  df-fl 13256  df-seq 13464  df-exp 13525  df-hash 13786  df-cj 14551  df-re 14552  df-im 14553  df-sqrt 14687  df-abs 14688  df-clim 14938  df-rlim 14939  df-sum 15139  df-rest 16802  df-topgen 16823  df-psmet 20212  df-xmet 20213  df-met 20214  df-bl 20215  df-mopn 20216  df-top 21648  df-topon 21665  df-bases 21700  df-cmp 22141  df-ovol 24219  df-vol 24220  df-sumge0 43466
This theorem is referenced by:  ovolval4lem2  43753
  Copyright terms: Public domain W3C validator