Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval3 Structured version   Visualization version   GIF version

Theorem ovolval3 45363
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Ξ£^ and vol ∘ (,). See ovolval 24990 and ovolval2 45360 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval3.a (πœ‘ β†’ 𝐴 βŠ† ℝ)
ovolval3.m 𝑀 = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval3 (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   πœ‘,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval3
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 ovolval3.a . . 3 (πœ‘ β†’ 𝐴 βŠ† ℝ)
2 eqid 2733 . . 3 {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}
31, 2ovolval2 45360 . 2 (πœ‘ β†’ (vol*β€˜π΄) = inf({𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}, ℝ*, < ))
4 ovolval3.m . . . . 5 𝑀 = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))}
5 reex 11201 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ∈ V
65, 5xpex 7740 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ Γ— ℝ) ∈ V
7 inss2 4230 . . . . . . . . . . . . . . . . . . . . . 22 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)
8 mapss 8883 . . . . . . . . . . . . . . . . . . . . . 22 (((ℝ Γ— ℝ) ∈ V ∧ ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)) β†’ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) βŠ† ((ℝ Γ— ℝ) ↑m β„•))
96, 7, 8mp2an 691 . . . . . . . . . . . . . . . . . . . . 21 (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) βŠ† ((ℝ Γ— ℝ) ↑m β„•)
109sseli 3979 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓 ∈ ((ℝ Γ— ℝ) ↑m β„•))
11 elmapi 8843 . . . . . . . . . . . . . . . . . . . 20 (𝑓 ∈ ((ℝ Γ— ℝ) ↑m β„•) β†’ 𝑓:β„•βŸΆ(ℝ Γ— ℝ))
1210, 11syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓:β„•βŸΆ(ℝ Γ— ℝ))
1312ffvelcdmda 7087 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (π‘“β€˜π‘›) ∈ (ℝ Γ— ℝ))
14 1st2nd2 8014 . . . . . . . . . . . . . . . . . 18 ((π‘“β€˜π‘›) ∈ (ℝ Γ— ℝ) β†’ (π‘“β€˜π‘›) = ⟨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩)
1513, 14syl 17 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (π‘“β€˜π‘›) = ⟨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩)
1615fveq2d 6896 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((,)β€˜(π‘“β€˜π‘›)) = ((,)β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩))
17 df-ov 7412 . . . . . . . . . . . . . . . . . 18 ((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›))) = ((,)β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩)
1817eqcomi 2742 . . . . . . . . . . . . . . . . 17 ((,)β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩) = ((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›)))
1918a1i 11 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((,)β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩) = ((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›))))
2016, 19eqtrd 2773 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((,)β€˜(π‘“β€˜π‘›)) = ((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›))))
2120fveq2d 6896 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (volβ€˜((,)β€˜(π‘“β€˜π‘›))) = (volβ€˜((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›)))))
22 xp1st 8007 . . . . . . . . . . . . . . . 16 ((π‘“β€˜π‘›) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(π‘“β€˜π‘›)) ∈ ℝ)
2313, 22syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (1st β€˜(π‘“β€˜π‘›)) ∈ ℝ)
24 xp2nd 8008 . . . . . . . . . . . . . . . 16 ((π‘“β€˜π‘›) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(π‘“β€˜π‘›)) ∈ ℝ)
2513, 24syl 17 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (2nd β€˜(π‘“β€˜π‘›)) ∈ ℝ)
26 elmapi 8843 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
2726adantr 482 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ 𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)))
28 simpr 486 . . . . . . . . . . . . . . . . 17 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•)
29 ovolfcl 24983 . . . . . . . . . . . . . . . . 17 ((𝑓:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑛 ∈ β„•) β†’ ((1st β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (2nd β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (1st β€˜(π‘“β€˜π‘›)) ≀ (2nd β€˜(π‘“β€˜π‘›))))
3027, 28, 29syl2anc 585 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((1st β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (2nd β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (1st β€˜(π‘“β€˜π‘›)) ≀ (2nd β€˜(π‘“β€˜π‘›))))
3130simp3d 1145 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (1st β€˜(π‘“β€˜π‘›)) ≀ (2nd β€˜(π‘“β€˜π‘›)))
32 volioo 25086 . . . . . . . . . . . . . . 15 (((1st β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (2nd β€˜(π‘“β€˜π‘›)) ∈ ℝ ∧ (1st β€˜(π‘“β€˜π‘›)) ≀ (2nd β€˜(π‘“β€˜π‘›))) β†’ (volβ€˜((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›)))) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
3323, 25, 31, 32syl3anc 1372 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (volβ€˜((1st β€˜(π‘“β€˜π‘›))(,)(2nd β€˜(π‘“β€˜π‘›)))) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
3421, 33eqtrd 2773 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (volβ€˜((,)β€˜(π‘“β€˜π‘›))) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
35 ioof 13424 . . . . . . . . . . . . . . . 16 (,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ
36 ffun 6721 . . . . . . . . . . . . . . . 16 ((,):(ℝ* Γ— ℝ*)βŸΆπ’« ℝ β†’ Fun (,))
3735, 36ax-mp 5 . . . . . . . . . . . . . . 15 Fun (,)
3837a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ Fun (,))
39 rexpssxrxp 11259 . . . . . . . . . . . . . . . 16 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
4039, 13sselid 3981 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (π‘“β€˜π‘›) ∈ (ℝ* Γ— ℝ*))
4135fdmi 6730 . . . . . . . . . . . . . . . . 17 dom (,) = (ℝ* Γ— ℝ*)
4241eqcomi 2742 . . . . . . . . . . . . . . . 16 (ℝ* Γ— ℝ*) = dom (,)
4342a1i 11 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (ℝ* Γ— ℝ*) = dom (,))
4440, 43eleqtrd 2836 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (π‘“β€˜π‘›) ∈ dom (,))
45 fvco 6990 . . . . . . . . . . . . . 14 ((Fun (,) ∧ (π‘“β€˜π‘›) ∈ dom (,)) β†’ ((vol ∘ (,))β€˜(π‘“β€˜π‘›)) = (volβ€˜((,)β€˜(π‘“β€˜π‘›))))
4638, 44, 45syl2anc 585 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((vol ∘ (,))β€˜(π‘“β€˜π‘›)) = (volβ€˜((,)β€˜(π‘“β€˜π‘›))))
4715fveq2d 6896 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›)) = ((abs ∘ βˆ’ )β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩))
48 df-ov 7412 . . . . . . . . . . . . . . . 16 ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›))) = ((abs ∘ βˆ’ )β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩)
4948eqcomi 2742 . . . . . . . . . . . . . . 15 ((abs ∘ βˆ’ )β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩) = ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›)))
5049a1i 11 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((abs ∘ βˆ’ )β€˜βŸ¨(1st β€˜(π‘“β€˜π‘›)), (2nd β€˜(π‘“β€˜π‘›))⟩) = ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›))))
5123recnd 11242 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (1st β€˜(π‘“β€˜π‘›)) ∈ β„‚)
5225recnd 11242 . . . . . . . . . . . . . . . 16 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (2nd β€˜(π‘“β€˜π‘›)) ∈ β„‚)
53 eqid 2733 . . . . . . . . . . . . . . . . 17 (abs ∘ βˆ’ ) = (abs ∘ βˆ’ )
5453cnmetdval 24287 . . . . . . . . . . . . . . . 16 (((1st β€˜(π‘“β€˜π‘›)) ∈ β„‚ ∧ (2nd β€˜(π‘“β€˜π‘›)) ∈ β„‚) β†’ ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›))) = (absβ€˜((1st β€˜(π‘“β€˜π‘›)) βˆ’ (2nd β€˜(π‘“β€˜π‘›)))))
5551, 52, 54syl2anc 585 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›))) = (absβ€˜((1st β€˜(π‘“β€˜π‘›)) βˆ’ (2nd β€˜(π‘“β€˜π‘›)))))
56 abssub 15273 . . . . . . . . . . . . . . . 16 (((1st β€˜(π‘“β€˜π‘›)) ∈ β„‚ ∧ (2nd β€˜(π‘“β€˜π‘›)) ∈ β„‚) β†’ (absβ€˜((1st β€˜(π‘“β€˜π‘›)) βˆ’ (2nd β€˜(π‘“β€˜π‘›)))) = (absβ€˜((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›)))))
5751, 52, 56syl2anc 585 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (absβ€˜((1st β€˜(π‘“β€˜π‘›)) βˆ’ (2nd β€˜(π‘“β€˜π‘›)))) = (absβ€˜((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›)))))
5823, 25, 31abssubge0d 15378 . . . . . . . . . . . . . . 15 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ (absβ€˜((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›)))) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
5955, 57, 583eqtrd 2777 . . . . . . . . . . . . . 14 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((1st β€˜(π‘“β€˜π‘›))(abs ∘ βˆ’ )(2nd β€˜(π‘“β€˜π‘›))) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
6047, 50, 593eqtrd 2777 . . . . . . . . . . . . 13 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›)) = ((2nd β€˜(π‘“β€˜π‘›)) βˆ’ (1st β€˜(π‘“β€˜π‘›))))
6134, 46, 603eqtr4d 2783 . . . . . . . . . . . 12 ((𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) ∧ 𝑛 ∈ β„•) β†’ ((vol ∘ (,))β€˜(π‘“β€˜π‘›)) = ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›)))
6261mpteq2dva 5249 . . . . . . . . . . 11 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (𝑛 ∈ β„• ↦ ((vol ∘ (,))β€˜(π‘“β€˜π‘›))) = (𝑛 ∈ β„• ↦ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›))))
63 volioof 44703 . . . . . . . . . . . . 13 (vol ∘ (,)):(ℝ* Γ— ℝ*)⟢(0[,]+∞)
6463a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (vol ∘ (,)):(ℝ* Γ— ℝ*)⟢(0[,]+∞))
6539a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*))
6612, 65fssd 6736 . . . . . . . . . . . 12 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓:β„•βŸΆ(ℝ* Γ— ℝ*))
67 fcompt 7131 . . . . . . . . . . . 12 (((vol ∘ (,)):(ℝ* Γ— ℝ*)⟢(0[,]+∞) ∧ 𝑓:β„•βŸΆ(ℝ* Γ— ℝ*)) β†’ ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ β„• ↦ ((vol ∘ (,))β€˜(π‘“β€˜π‘›))))
6864, 66, 67syl2anc 585 . . . . . . . . . . 11 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ ((vol ∘ (,)) ∘ 𝑓) = (𝑛 ∈ β„• ↦ ((vol ∘ (,))β€˜(π‘“β€˜π‘›))))
69 absf 15284 . . . . . . . . . . . . . 14 abs:β„‚βŸΆβ„
70 subf 11462 . . . . . . . . . . . . . 14 βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚
71 fco 6742 . . . . . . . . . . . . . 14 ((abs:β„‚βŸΆβ„ ∧ βˆ’ :(β„‚ Γ— β„‚)βŸΆβ„‚) β†’ (abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„)
7269, 70, 71mp2an 691 . . . . . . . . . . . . 13 (abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„
7372a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„)
74 rr2sscn2 44076 . . . . . . . . . . . . . 14 (ℝ Γ— ℝ) βŠ† (β„‚ Γ— β„‚)
7574a1i 11 . . . . . . . . . . . . 13 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (ℝ Γ— ℝ) βŠ† (β„‚ Γ— β„‚))
7612, 75fssd 6736 . . . . . . . . . . . 12 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ 𝑓:β„•βŸΆ(β„‚ Γ— β„‚))
77 fcompt 7131 . . . . . . . . . . . 12 (((abs ∘ βˆ’ ):(β„‚ Γ— β„‚)βŸΆβ„ ∧ 𝑓:β„•βŸΆ(β„‚ Γ— β„‚)) β†’ ((abs ∘ βˆ’ ) ∘ 𝑓) = (𝑛 ∈ β„• ↦ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›))))
7873, 76, 77syl2anc 585 . . . . . . . . . . 11 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ ((abs ∘ βˆ’ ) ∘ 𝑓) = (𝑛 ∈ β„• ↦ ((abs ∘ βˆ’ )β€˜(π‘“β€˜π‘›))))
7962, 68, 783eqtr4d 2783 . . . . . . . . . 10 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ ((vol ∘ (,)) ∘ 𝑓) = ((abs ∘ βˆ’ ) ∘ 𝑓))
8079fveq2d 6896 . . . . . . . . 9 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)) = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))
8180eqeq2d 2744 . . . . . . . 8 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ (𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)) ↔ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓))))
8281anbi2d 630 . . . . . . 7 (𝑓 ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•) β†’ ((𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓))) ↔ (𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))))
8382rexbiia 3093 . . . . . 6 (βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓))) ↔ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓))))
8483rabbii 3439 . . . . 5 {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((vol ∘ (,)) ∘ 𝑓)))} = {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}
854, 84eqtr2i 2762 . . . 4 {𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))} = 𝑀
8685infeq1i 9473 . . 3 inf({𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < )
8786a1i 11 . 2 (πœ‘ β†’ inf({𝑦 ∈ ℝ* ∣ βˆƒπ‘“ ∈ (( ≀ ∩ (ℝ Γ— ℝ)) ↑m β„•)(𝐴 βŠ† βˆͺ ran ((,) ∘ 𝑓) ∧ 𝑦 = (Ξ£^β€˜((abs ∘ βˆ’ ) ∘ 𝑓)))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
883, 87eqtrd 2773 1 (πœ‘ β†’ (vol*β€˜π΄) = inf(𝑀, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βŸ¨cop 4635  βˆͺ cuni 4909   class class class wbr 5149   ↦ cmpt 5232   Γ— cxp 5675  dom cdm 5677  ran crn 5678   ∘ ccom 5681  Fun wfun 6538  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  2nd c2nd 7974   ↑m cmap 8820  infcinf 9436  β„‚cc 11108  β„cr 11109  0cc0 11110  +∞cpnf 11245  β„*cxr 11247   < clt 11248   ≀ cle 11249   βˆ’ cmin 11444  β„•cn 12212  (,)cioo 13324  [,]cicc 13327  abscabs 15181  vol*covol 24979  volcvol 24980  Ξ£^csumge0 45078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-rlim 15433  df-sum 15633  df-rest 17368  df-topgen 17389  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-top 22396  df-topon 22413  df-bases 22449  df-cmp 22891  df-ovol 24981  df-vol 24982  df-sumge0 45079
This theorem is referenced by:  ovolval4lem2  45366
  Copyright terms: Public domain W3C validator