Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2lem Structured version   Visualization version   GIF version

Theorem ovolval2lem 46648
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolval2lem.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
ovolval2lem (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem ovolval2lem
StepHypRef Expression
1 reex 11166 . . . . . . 7 ℝ ∈ V
21, 1xpex 7732 . . . . . 6 (ℝ × ℝ) ∈ V
3 inss2 4204 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 mapss 8865 . . . . . 6 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
52, 3, 4mp2an 692 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
6 ovolval2lem.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72inex2 5276 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ∈ V
87a1i 11 . . . . . . 7 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
9 nnex 12199 . . . . . . . 8 ℕ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
118, 10elmapd 8816 . . . . . 6 (𝜑 → (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
126, 11mpbird 257 . . . . 5 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
135, 12sselid 3947 . . . 4 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
14 1zzd 12571 . . . . 5 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 1 ∈ ℤ)
15 nnuz 12843 . . . . 5 ℕ = (ℤ‘1)
16 elmapi 8825 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
1716adantr 480 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
18 simpr 484 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1917, 18fvovco 45194 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑘) = ((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘))))
2019fveq2d 6865 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
2116ffvelcdmda 7059 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ × ℝ))
22 xp1st 8003 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
2321, 22syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
24 xp2nd 8004 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
2521, 24syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
26 volicore 46586 . . . . . . . 8 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2723, 25, 26syl2anc 584 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2820, 27eqeltrd 2829 . . . . . 6 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℝ)
2928recnd 11209 . . . . 5 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℂ)
30 eqid 2730 . . . . 5 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘)))
31 eqid 2730 . . . . 5 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))))
3214, 15, 29, 30, 31fsumsermpt 45584 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
3313, 32syl 17 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
3534iftrued 4499 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
3613, 23sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3736adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3813, 25sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
40 ressxr 11225 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4140, 37sselid 3947 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ*)
4240, 39sselid 3947 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ*)
43 xpss 5657 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (V × V)
4443, 21sselid 3947 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (V × V))
45 1st2ndb 8011 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (V × V) ↔ (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4644, 45sylib 218 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4713, 46sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4847eqcomd 2736 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ = (𝐹𝑘))
49 inss1 4203 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤ )
516, 50fssd 6708 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ ≤ )
5251ffvelcdmda 7059 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ≤ )
5348, 52eqeltrd 2829 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
54 df-br 5111 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ↔ ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
5553, 54sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
57 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
5839, 37lenltd 11327 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)) ↔ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
5957, 58mpbird 257 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)))
6041, 42, 56, 59xrletrid 13122 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
61 simp3 1138 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
62 simp1 1136 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
63 simp2 1137 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
6462, 63eqleltd 11325 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)) ↔ ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))))
6561, 64mpbid 232 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
6665simprd 495 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
6766iffalsed 4502 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = 0)
6863recnd 11209 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
6961eqcomd 2736 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) = (1st ‘(𝐹𝑘)))
7068, 69subeq0bd 11611 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))) = 0)
7167, 70eqtr4d 2768 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7237, 39, 60, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7335, 72pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
74 volico 45988 . . . . . . . . 9 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7536, 38, 74syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7636, 38, 55abssuble0d 15408 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7773, 75, 763eqtr4d 2775 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
7813adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
79 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8078, 79, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
8146fveq2d 6865 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
82 df-ov 7393 . . . . . . . . . . 11 ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
8382eqcomi 2739 . . . . . . . . . 10 ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘)))
8483a1i 11 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))))
8523recnd 11209 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℂ)
8625recnd 11209 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
87 eqid 2730 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
8887cnmetdval 24665 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℂ ∧ (2nd ‘(𝐹𝑘)) ∈ ℂ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
8985, 86, 88syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9081, 84, 893eqtrd 2769 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9178, 79, 90syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9277, 80, 913eqtr4d 2775 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = ((abs ∘ − )‘(𝐹𝑘)))
9392mpteq2dva 5203 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
9413, 16syl 17 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
95 rr2sscn2 45369 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
9695a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ⊆ (ℂ × ℂ))
97 absf 15311 . . . . . . . 8 abs:ℂ⟶ℝ
98 subf 11430 . . . . . . . 8 − :(ℂ × ℂ)⟶ℂ
99 fco 6715 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10097, 98, 99mp2an 692 . . . . . . 7 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
101100a1i 11 . . . . . 6 (𝜑 → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10294, 96, 101fcomptss 45204 . . . . 5 (𝜑 → ((abs ∘ − ) ∘ 𝐹) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
10393, 102eqtr4d 2768 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = ((abs ∘ − ) ∘ 𝐹))
104103seqeq3d 13981 . . 3 (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
10533, 104eqtr2d 2766 . 2 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
106105rneqd 5905 1 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  wss 3917  ifcif 4491  cop 4598   class class class wbr 5110  cmpt 5191   × cxp 5639  ran crn 5642  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  m cmap 8802  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cmin 11412  cn 12193  [,)cico 13315  ...cfz 13475  seqcseq 13973  abscabs 15207  Σcsu 15659  volcvol 25371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-rest 17392  df-topgen 17413  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-top 22788  df-topon 22805  df-bases 22840  df-cmp 23281  df-ovol 25372  df-vol 25373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator