Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2lem Structured version   Visualization version   GIF version

Theorem ovolval2lem 44071
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolval2lem.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
ovolval2lem (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem ovolval2lem
StepHypRef Expression
1 reex 10893 . . . . . . 7 ℝ ∈ V
21, 1xpex 7581 . . . . . 6 (ℝ × ℝ) ∈ V
3 inss2 4160 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 mapss 8635 . . . . . 6 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
52, 3, 4mp2an 688 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
6 ovolval2lem.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72inex2 5237 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ∈ V
87a1i 11 . . . . . . 7 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
9 nnex 11909 . . . . . . . 8 ℕ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
118, 10elmapd 8587 . . . . . 6 (𝜑 → (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
126, 11mpbird 256 . . . . 5 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
135, 12sselid 3915 . . . 4 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
14 1zzd 12281 . . . . 5 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 1 ∈ ℤ)
15 nnuz 12550 . . . . 5 ℕ = (ℤ‘1)
16 elmapi 8595 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
1716adantr 480 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
18 simpr 484 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1917, 18fvovco 42621 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑘) = ((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘))))
2019fveq2d 6760 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
2116ffvelrnda 6943 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ × ℝ))
22 xp1st 7836 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
2321, 22syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
24 xp2nd 7837 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
2521, 24syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
26 volicore 44009 . . . . . . . 8 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2723, 25, 26syl2anc 583 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2820, 27eqeltrd 2839 . . . . . 6 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℝ)
2928recnd 10934 . . . . 5 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℂ)
30 eqid 2738 . . . . 5 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘)))
31 eqid 2738 . . . . 5 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))))
3214, 15, 29, 30, 31fsumsermpt 43010 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
3313, 32syl 17 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
3534iftrued 4464 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
3613, 23sylan 579 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3736adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3813, 25sylan 579 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
40 ressxr 10950 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4140, 37sselid 3915 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ*)
4240, 39sselid 3915 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ*)
43 xpss 5596 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (V × V)
4443, 21sselid 3915 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (V × V))
45 1st2ndb 7844 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (V × V) ↔ (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4644, 45sylib 217 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4713, 46sylan 579 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4847eqcomd 2744 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ = (𝐹𝑘))
49 inss1 4159 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤ )
516, 50fssd 6602 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ ≤ )
5251ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ≤ )
5348, 52eqeltrd 2839 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
54 df-br 5071 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ↔ ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
5553, 54sylibr 233 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
57 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
5839, 37lenltd 11051 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)) ↔ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
5957, 58mpbird 256 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)))
6041, 42, 56, 59xrletrid 12818 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
61 simp3 1136 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
62 simp1 1134 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
63 simp2 1135 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
6462, 63eqleltd 11049 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)) ↔ ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))))
6561, 64mpbid 231 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
6665simprd 495 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
6766iffalsed 4467 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = 0)
6863recnd 10934 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
6961eqcomd 2744 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) = (1st ‘(𝐹𝑘)))
7068, 69subeq0bd 11331 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))) = 0)
7167, 70eqtr4d 2781 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7237, 39, 60, 71syl3anc 1369 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7335, 72pm2.61dan 809 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
74 volico 43414 . . . . . . . . 9 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7536, 38, 74syl2anc 583 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7636, 38, 55abssuble0d 15072 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7773, 75, 763eqtr4d 2788 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
7813adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
79 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8078, 79, 20syl2anc 583 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
8146fveq2d 6760 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
82 df-ov 7258 . . . . . . . . . . 11 ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
8382eqcomi 2747 . . . . . . . . . 10 ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘)))
8483a1i 11 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))))
8523recnd 10934 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℂ)
8625recnd 10934 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
87 eqid 2738 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
8887cnmetdval 23840 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℂ ∧ (2nd ‘(𝐹𝑘)) ∈ ℂ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
8985, 86, 88syl2anc 583 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9081, 84, 893eqtrd 2782 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9178, 79, 90syl2anc 583 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9277, 80, 913eqtr4d 2788 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = ((abs ∘ − )‘(𝐹𝑘)))
9392mpteq2dva 5170 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
9413, 16syl 17 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
95 rr2sscn2 42795 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
9695a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ⊆ (ℂ × ℂ))
97 absf 14977 . . . . . . . 8 abs:ℂ⟶ℝ
98 subf 11153 . . . . . . . 8 − :(ℂ × ℂ)⟶ℂ
99 fco 6608 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10097, 98, 99mp2an 688 . . . . . . 7 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
101100a1i 11 . . . . . 6 (𝜑 → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10294, 96, 101fcomptss 42632 . . . . 5 (𝜑 → ((abs ∘ − ) ∘ 𝐹) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
10393, 102eqtr4d 2781 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = ((abs ∘ − ) ∘ 𝐹))
104103seqeq3d 13657 . . 3 (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
10533, 104eqtr2d 2779 . 2 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
106105rneqd 5836 1 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  ifcif 4456  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cmin 11135  cn 11903  [,)cico 13010  ...cfz 13168  seqcseq 13649  abscabs 14873  Σcsu 15325  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004  df-cmp 22446  df-ovol 24533  df-vol 24534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator