Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2lem Structured version   Visualization version   GIF version

Theorem ovolval2lem 46644
Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypothesis
Ref Expression
ovolval2lem.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
ovolval2lem (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Distinct variable groups:   𝑘,𝐹,𝑛   𝜑,𝑘
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem ovolval2lem
StepHypRef Expression
1 reex 11119 . . . . . . 7 ℝ ∈ V
21, 1xpex 7693 . . . . . 6 (ℝ × ℝ) ∈ V
3 inss2 4191 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
4 mapss 8823 . . . . . 6 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
52, 3, 4mp2an 692 . . . . 5 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
6 ovolval2lem.1 . . . . . 6 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
72inex2 5260 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ∈ V
87a1i 11 . . . . . . 7 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ∈ V)
9 nnex 12153 . . . . . . . 8 ℕ ∈ V
109a1i 11 . . . . . . 7 (𝜑 → ℕ ∈ V)
118, 10elmapd 8774 . . . . . 6 (𝜑 → (𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ↔ 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))))
126, 11mpbird 257 . . . . 5 (𝜑𝐹 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ))
135, 12sselid 3935 . . . 4 (𝜑𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
14 1zzd 12525 . . . . 5 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 1 ∈ ℤ)
15 nnuz 12797 . . . . 5 ℕ = (ℤ‘1)
16 elmapi 8783 . . . . . . . . . 10 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
1716adantr 480 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝐹:ℕ⟶(ℝ × ℝ))
18 simpr 484 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
1917, 18fvovco 45191 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (([,) ∘ 𝐹)‘𝑘) = ((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘))))
2019fveq2d 6830 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
2116ffvelcdmda 7022 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (ℝ × ℝ))
22 xp1st 7963 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
2321, 22syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
24 xp2nd 7964 . . . . . . . . 9 ((𝐹𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
2521, 24syl 17 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
26 volicore 46582 . . . . . . . 8 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2723, 25, 26syl2anc 584 . . . . . . 7 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) ∈ ℝ)
2820, 27eqeltrd 2828 . . . . . 6 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℝ)
2928recnd 11162 . . . . 5 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) ∈ ℂ)
30 eqid 2729 . . . . 5 (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘)))
31 eqid 2729 . . . . 5 seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))))
3214, 15, 29, 30, 31fsumsermpt 45580 . . . 4 (𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
3313, 32syl 17 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))) = seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))))
34 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
3534iftrued 4486 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
3613, 23sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3736adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
3813, 25sylan 580 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
3938adantr 480 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
40 ressxr 11178 . . . . . . . . . . . 12 ℝ ⊆ ℝ*
4140, 37sselid 3935 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ*)
4240, 39sselid 3935 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ*)
43 xpss 5639 . . . . . . . . . . . . . . . . . 18 (ℝ × ℝ) ⊆ (V × V)
4443, 21sselid 3935 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) ∈ (V × V))
45 1st2ndb 7971 . . . . . . . . . . . . . . . . 17 ((𝐹𝑘) ∈ (V × V) ↔ (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4644, 45sylib 218 . . . . . . . . . . . . . . . 16 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4713, 46sylan 580 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
4847eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ = (𝐹𝑘))
49 inss1 4190 . . . . . . . . . . . . . . . . 17 ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤
5049a1i 11 . . . . . . . . . . . . . . . 16 (𝜑 → ( ≤ ∩ (ℝ × ℝ)) ⊆ ≤ )
516, 50fssd 6673 . . . . . . . . . . . . . . 15 (𝜑𝐹:ℕ⟶ ≤ )
5251ffvelcdmda 7022 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ≤ )
5348, 52eqeltrd 2828 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
54 df-br 5096 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ↔ ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩ ∈ ≤ )
5553, 54sylibr 234 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
5655adantr 480 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)))
57 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
5839, 37lenltd 11281 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)) ↔ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
5957, 58mpbird 257 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ≤ (1st ‘(𝐹𝑘)))
6041, 42, 56, 59xrletrid 13076 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
61 simp3 1138 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)))
62 simp1 1136 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (1st ‘(𝐹𝑘)) ∈ ℝ)
63 simp2 1137 . . . . . . . . . . . . . . 15 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℝ)
6462, 63eqleltd 11279 . . . . . . . . . . . . . 14 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘)) ↔ ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))))
6561, 64mpbid 232 . . . . . . . . . . . . 13 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((1st ‘(𝐹𝑘)) ≤ (2nd ‘(𝐹𝑘)) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))))
6665simprd 495 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)))
6766iffalsed 4489 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = 0)
6863recnd 11162 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
6961eqcomd 2735 . . . . . . . . . . . 12 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → (2nd ‘(𝐹𝑘)) = (1st ‘(𝐹𝑘)))
7068, 69subeq0bd 11565 . . . . . . . . . . 11 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))) = 0)
7167, 70eqtr4d 2767 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ ∧ (1st ‘(𝐹𝑘)) = (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7237, 39, 60, 71syl3anc 1373 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ ¬ (1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘))) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7335, 72pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
74 volico 45984 . . . . . . . . 9 (((1st ‘(𝐹𝑘)) ∈ ℝ ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7536, 38, 74syl2anc 584 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = if((1st ‘(𝐹𝑘)) < (2nd ‘(𝐹𝑘)), ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))), 0))
7636, 38, 55abssuble0d 15361 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))) = ((2nd ‘(𝐹𝑘)) − (1st ‘(𝐹𝑘))))
7773, 75, 763eqtr4d 2774 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
7813adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝐹 ∈ ((ℝ × ℝ) ↑m ℕ))
79 simpr 484 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
8078, 79, 20syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = (vol‘((1st ‘(𝐹𝑘))[,)(2nd ‘(𝐹𝑘)))))
8146fveq2d 6830 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
82 df-ov 7356 . . . . . . . . . . 11 ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
8382eqcomi 2738 . . . . . . . . . 10 ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘)))
8483a1i 11 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩) = ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))))
8523recnd 11162 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (1st ‘(𝐹𝑘)) ∈ ℂ)
8625recnd 11162 . . . . . . . . . 10 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → (2nd ‘(𝐹𝑘)) ∈ ℂ)
87 eqid 2729 . . . . . . . . . . 11 (abs ∘ − ) = (abs ∘ − )
8887cnmetdval 24675 . . . . . . . . . 10 (((1st ‘(𝐹𝑘)) ∈ ℂ ∧ (2nd ‘(𝐹𝑘)) ∈ ℂ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
8985, 86, 88syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((1st ‘(𝐹𝑘))(abs ∘ − )(2nd ‘(𝐹𝑘))) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9081, 84, 893eqtrd 2768 . . . . . . . 8 ((𝐹 ∈ ((ℝ × ℝ) ↑m ℕ) ∧ 𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9178, 79, 90syl2anc 584 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((abs ∘ − )‘(𝐹𝑘)) = (abs‘((1st ‘(𝐹𝑘)) − (2nd ‘(𝐹𝑘)))))
9277, 80, 913eqtr4d 2774 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → (vol‘(([,) ∘ 𝐹)‘𝑘)) = ((abs ∘ − )‘(𝐹𝑘)))
9392mpteq2dva 5188 . . . . 5 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
9413, 16syl 17 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ × ℝ))
95 rr2sscn2 45365 . . . . . . 7 (ℝ × ℝ) ⊆ (ℂ × ℂ)
9695a1i 11 . . . . . 6 (𝜑 → (ℝ × ℝ) ⊆ (ℂ × ℂ))
97 absf 15264 . . . . . . . 8 abs:ℂ⟶ℝ
98 subf 11384 . . . . . . . 8 − :(ℂ × ℂ)⟶ℂ
99 fco 6680 . . . . . . . 8 ((abs:ℂ⟶ℝ ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10097, 98, 99mp2an 692 . . . . . . 7 (abs ∘ − ):(ℂ × ℂ)⟶ℝ
101100a1i 11 . . . . . 6 (𝜑 → (abs ∘ − ):(ℂ × ℂ)⟶ℝ)
10294, 96, 101fcomptss 45201 . . . . 5 (𝜑 → ((abs ∘ − ) ∘ 𝐹) = (𝑘 ∈ ℕ ↦ ((abs ∘ − )‘(𝐹𝑘))))
10393, 102eqtr4d 2767 . . . 4 (𝜑 → (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘))) = ((abs ∘ − ) ∘ 𝐹))
104103seqeq3d 13935 . . 3 (𝜑 → seq1( + , (𝑘 ∈ ℕ ↦ (vol‘(([,) ∘ 𝐹)‘𝑘)))) = seq1( + , ((abs ∘ − ) ∘ 𝐹)))
10533, 104eqtr2d 2765 . 2 (𝜑 → seq1( + , ((abs ∘ − ) ∘ 𝐹)) = (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
106105rneqd 5884 1 (𝜑 → ran seq1( + , ((abs ∘ − ) ∘ 𝐹)) = ran (𝑛 ∈ ℕ ↦ Σ𝑘 ∈ (1...𝑛)(vol‘(([,) ∘ 𝐹)‘𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cin 3904  wss 3905  ifcif 4478  cop 4585   class class class wbr 5095  cmpt 5176   × cxp 5621  ran crn 5624  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  1st c1st 7929  2nd c2nd 7930  m cmap 8760  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  *cxr 11167   < clt 11168  cle 11169  cmin 11366  cn 12147  [,)cico 13269  ...cfz 13429  seqcseq 13927  abscabs 15160  Σcsu 15612  volcvol 25381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-rest 17345  df-topgen 17366  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-top 22798  df-topon 22815  df-bases 22850  df-cmp 23291  df-ovol 25382  df-vol 25383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator