Proof of Theorem ovolval2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ovolval2.a | . . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) | 
| 2 |  | eqid 2737 | . . . 4
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))} | 
| 3 | 2 | ovolval 25508 | . . 3
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) = inf({𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) | 
| 4 | 1, 3 | syl 17 | . 2
⊢ (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) | 
| 5 | 2 | a1i 11 | . . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}) | 
| 6 |  | reex 11246 | . . . . . . . . . . . . . . 15
⊢ ℝ
∈ V | 
| 7 | 6, 6 | xpex 7773 | . . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V | 
| 8 |  | inss2 4238 | . . . . . . . . . . . . . 14
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) | 
| 9 |  | mapss 8929 | . . . . . . . . . . . . . 14
⊢
(((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ ×
ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ⊆ ((ℝ ×
ℝ) ↑m ℕ)) | 
| 10 | 7, 8, 9 | mp2an 692 | . . . . . . . . . . . . 13
⊢ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ
× ℝ) ↑m ℕ) | 
| 11 | 10 | sseli 3979 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) | 
| 12 |  | 1zzd 12648 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 1 ∈ ℤ) | 
| 13 | 11, 12 | syl 17 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 1 ∈
ℤ) | 
| 14 | 13 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → 1 ∈
ℤ) | 
| 15 |  | nnuz 12921 | . . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) | 
| 16 |  | absfico 45223 | . . . . . . . . . . . . . 14
⊢
abs:ℂ⟶(0[,)+∞) | 
| 17 |  | subf 11510 | . . . . . . . . . . . . . 14
⊢  −
:(ℂ × ℂ)⟶ℂ | 
| 18 |  | fco 6760 | . . . . . . . . . . . . . 14
⊢
((abs:ℂ⟶(0[,)+∞) ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶(0[,)+∞)) | 
| 19 | 16, 17, 18 | mp2an 692 | . . . . . . . . . . . . 13
⊢ (abs
∘ − ):(ℂ ×
ℂ)⟶(0[,)+∞) | 
| 20 | 19 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (abs ∘ −
):(ℂ × ℂ)⟶(0[,)+∞)) | 
| 21 |  | rr2sscn2 45377 | . . . . . . . . . . . . 13
⊢ (ℝ
× ℝ) ⊆ (ℂ × ℂ) | 
| 22 | 21 | a1i 11 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (ℝ × ℝ)
⊆ (ℂ × ℂ)) | 
| 23 |  | elmapi 8889 | . . . . . . . . . . . . 13
⊢ (𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) | 
| 24 | 11, 23 | syl 17 | . . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) | 
| 25 | 20, 22, 24 | fcoss 45215 | . . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((abs ∘ − )
∘ 𝑓):ℕ⟶(0[,)+∞)) | 
| 26 | 25 | adantl 481 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → ((abs ∘ − ) ∘
𝑓):ℕ⟶(0[,)+∞)) | 
| 27 |  | eqid 2737 | . . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) | 
| 28 | 14, 15, 26, 27 | sge0seq 46461 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) →
(Σ^‘((abs ∘ − ) ∘ 𝑓)) = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
)) | 
| 29 | 28 | eqcomd 2743 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) = (Σ^‘((abs
∘ − ) ∘ 𝑓))) | 
| 30 | 29 | eqeq2d 2748 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ↔ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))) | 
| 31 | 30 | anbi2d 630 | . . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓))))) | 
| 32 | 31 | rexbidva 3177 | . . . . 5
⊢ (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓))))) | 
| 33 | 32 | rabbidv 3444 | . . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))}) | 
| 34 |  | ovolval2.m | . . . . . 6
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} | 
| 35 | 34 | eqcomi 2746 | . . . . 5
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀 | 
| 36 | 35 | a1i 11 | . . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀) | 
| 37 | 5, 33, 36 | 3eqtrd 2781 | . . 3
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = 𝑀) | 
| 38 | 37 | infeq1d 9517 | . 2
⊢ (𝜑 → inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) = inf(𝑀, ℝ*, <
)) | 
| 39 | 4, 38 | eqtrd 2777 | 1
⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, <
)) |