Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovolval2 Structured version   Visualization version   GIF version

Theorem ovolval2 43125
 Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using Σ^. See ovolval 24066 for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ovolval2.a (𝜑𝐴 ⊆ ℝ)
ovolval2.m 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
Assertion
Ref Expression
ovolval2 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
Distinct variable groups:   𝐴,𝑓,𝑦   𝜑,𝑓,𝑦
Allowed substitution hints:   𝑀(𝑦,𝑓)

Proof of Theorem ovolval2
StepHypRef Expression
1 ovolval2.a . . 3 (𝜑𝐴 ⊆ ℝ)
2 eqid 2824 . . . 4 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}
32ovolval 24066 . . 3 (𝐴 ⊆ ℝ → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
41, 3syl 17 . 2 (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
52a1i 11 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))})
6 reex 10613 . . . . . . . . . . . . . . 15 ℝ ∈ V
76, 6xpex 7459 . . . . . . . . . . . . . 14 (ℝ × ℝ) ∈ V
8 inss2 4189 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
9 mapss 8436 . . . . . . . . . . . . . 14 (((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ))
107, 8, 9mp2an 691 . . . . . . . . . . . . 13 (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ × ℝ) ↑m ℕ)
1110sseli 3947 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ) ↑m ℕ))
12 1zzd 11999 . . . . . . . . . . . 12 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 1 ∈ ℤ)
1311, 12syl 17 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 1 ∈ ℤ)
1413adantl 485 . . . . . . . . . 10 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → 1 ∈ ℤ)
15 nnuz 12267 . . . . . . . . . 10 ℕ = (ℤ‘1)
16 absfico 41688 . . . . . . . . . . . . . 14 abs:ℂ⟶(0[,)+∞)
17 subf 10873 . . . . . . . . . . . . . 14 − :(ℂ × ℂ)⟶ℂ
18 fco 6512 . . . . . . . . . . . . . 14 ((abs:ℂ⟶(0[,)+∞) ∧ − :(ℂ × ℂ)⟶ℂ) → (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞))
1916, 17, 18mp2an 691 . . . . . . . . . . . . 13 (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞)
2019a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (abs ∘ − ):(ℂ × ℂ)⟶(0[,)+∞))
21 rr2sscn2 41840 . . . . . . . . . . . . 13 (ℝ × ℝ) ⊆ (ℂ × ℂ)
2221a1i 11 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → (ℝ × ℝ) ⊆ (ℂ × ℂ))
23 elmapi 8411 . . . . . . . . . . . . 13 (𝑓 ∈ ((ℝ × ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
2411, 23syl 17 . . . . . . . . . . . 12 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ × ℝ))
2520, 22, 24fcoss 41680 . . . . . . . . . . 11 (𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶(0[,)+∞))
2625adantl 485 . . . . . . . . . 10 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((abs ∘ − ) ∘ 𝑓):ℕ⟶(0[,)+∞))
27 eqid 2824 . . . . . . . . . 10 seq1( + , ((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − ) ∘ 𝑓))
2814, 15, 26, 27sge0seq 42927 . . . . . . . . 9 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (Σ^‘((abs ∘ − ) ∘ 𝑓)) = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))
2928eqcomd 2830 . . . . . . . 8 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) = (Σ^‘((abs ∘ − ) ∘ 𝑓)))
3029eqeq2d 2835 . . . . . . 7 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → (𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ) ↔ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓))))
3130anbi2d 631 . . . . . 6 ((𝜑𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)) → ((𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ (𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
3231rexbidva 3288 . . . . 5 (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < )) ↔ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))))
3332rabbidv 3465 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))})
34 ovolval2.m . . . . . 6 𝑀 = {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))}
3534eqcomi 2833 . . . . 5 {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀
3635a1i 11 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = (Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀)
375, 33, 363eqtrd 2863 . . 3 (𝜑 → {𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))} = 𝑀)
3837infeq1d 8925 . 2 (𝜑 → inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ) = inf(𝑀, ℝ*, < ))
394, 38eqtrd 2859 1 (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∃wrex 3133  {crab 3136  Vcvv 3479   ∩ cin 3917   ⊆ wss 3918  ∪ cuni 4819   × cxp 5534  ran crn 5537   ∘ ccom 5540  ⟶wf 6332  ‘cfv 6336  (class class class)co 7138   ↑m cmap 8389  supcsup 8888  infcinf 8889  ℂcc 10520  ℝcr 10521  0cc0 10522  1c1 10523   + caddc 10525  +∞cpnf 10657  ℝ*cxr 10659   < clt 10660   ≤ cle 10661   − cmin 10855  ℕcn 11623  ℤcz 11967  (,)cioo 12724  [,)cico 12726  seqcseq 13362  abscabs 14582  vol*covol 24055  Σ^csumge0 42843 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-rp 12376  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-seq 13363  df-exp 13424  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-clim 14834  df-sum 15032  df-ovol 24057  df-sumge0 42844 This theorem is referenced by:  ovolval3  43128
 Copyright terms: Public domain W3C validator