Proof of Theorem ovolval2
Step | Hyp | Ref
| Expression |
1 | | ovolval2.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
2 | | eqid 2738 |
. . . 4
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))} = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
))} |
3 | 2 | ovolval 24637 |
. . 3
⊢ (𝐴 ⊆ ℝ →
(vol*‘𝐴) = inf({𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
4 | 1, 3 | syl 17 |
. 2
⊢ (𝜑 → (vol*‘𝐴) = inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < )) |
5 | 2 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}) |
6 | | reex 10962 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
7 | 6, 6 | xpex 7603 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V |
8 | | inss2 4163 |
. . . . . . . . . . . . . 14
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
9 | | mapss 8677 |
. . . . . . . . . . . . . 14
⊢
(((ℝ × ℝ) ∈ V ∧ ( ≤ ∩ (ℝ ×
ℝ)) ⊆ (ℝ × ℝ)) → (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) ⊆ ((ℝ ×
ℝ) ↑m ℕ)) |
10 | 7, 8, 9 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ) ⊆ ((ℝ
× ℝ) ↑m ℕ) |
11 | 10 | sseli 3917 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓 ∈ ((ℝ × ℝ)
↑m ℕ)) |
12 | | 1zzd 12351 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 1 ∈ ℤ) |
13 | 11, 12 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 1 ∈
ℤ) |
14 | 13 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → 1 ∈
ℤ) |
15 | | nnuz 12621 |
. . . . . . . . . 10
⊢ ℕ =
(ℤ≥‘1) |
16 | | absfico 42758 |
. . . . . . . . . . . . . 14
⊢
abs:ℂ⟶(0[,)+∞) |
17 | | subf 11223 |
. . . . . . . . . . . . . 14
⊢ −
:(ℂ × ℂ)⟶ℂ |
18 | | fco 6624 |
. . . . . . . . . . . . . 14
⊢
((abs:ℂ⟶(0[,)+∞) ∧ − :(ℂ ×
ℂ)⟶ℂ) → (abs ∘ − ):(ℂ ×
ℂ)⟶(0[,)+∞)) |
19 | 16, 17, 18 | mp2an 689 |
. . . . . . . . . . . . 13
⊢ (abs
∘ − ):(ℂ ×
ℂ)⟶(0[,)+∞) |
20 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (abs ∘ −
):(ℂ × ℂ)⟶(0[,)+∞)) |
21 | | rr2sscn2 42905 |
. . . . . . . . . . . . 13
⊢ (ℝ
× ℝ) ⊆ (ℂ × ℂ) |
22 | 21 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → (ℝ × ℝ)
⊆ (ℂ × ℂ)) |
23 | | elmapi 8637 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ ((ℝ ×
ℝ) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) |
24 | 11, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → 𝑓:ℕ⟶(ℝ ×
ℝ)) |
25 | 20, 22, 24 | fcoss 42750 |
. . . . . . . . . . 11
⊢ (𝑓 ∈ (( ≤ ∩ (ℝ
× ℝ)) ↑m ℕ) → ((abs ∘ − )
∘ 𝑓):ℕ⟶(0[,)+∞)) |
26 | 25 | adantl 482 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → ((abs ∘ − ) ∘
𝑓):ℕ⟶(0[,)+∞)) |
27 | | eqid 2738 |
. . . . . . . . . 10
⊢ seq1( + ,
((abs ∘ − ) ∘ 𝑓)) = seq1( + , ((abs ∘ − )
∘ 𝑓)) |
28 | 14, 15, 26, 27 | sge0seq 43984 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) →
(Σ^‘((abs ∘ − ) ∘ 𝑓)) = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, <
)) |
29 | 28 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → sup(ran seq1( + , ((abs ∘
− ) ∘ 𝑓)),
ℝ*, < ) = (Σ^‘((abs
∘ − ) ∘ 𝑓))) |
30 | 29 | eqeq2d 2749 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → (𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ) ↔ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))) |
31 | 30 | anbi2d 629 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)) → ((𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓))))) |
32 | 31 | rexbidva 3225 |
. . . . 5
⊢ (𝜑 → (∃𝑓 ∈ (( ≤ ∩ (ℝ ×
ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < )) ↔
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓))))) |
33 | 32 | rabbidv 3414 |
. . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))}) |
34 | | ovolval2.m |
. . . . . 6
⊢ 𝑀 = {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} |
35 | 34 | eqcomi 2747 |
. . . . 5
⊢ {𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀 |
36 | 35 | a1i 11 |
. . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 =
(Σ^‘((abs ∘ − ) ∘ 𝑓)))} = 𝑀) |
37 | 5, 33, 36 | 3eqtrd 2782 |
. . 3
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))} = 𝑀) |
38 | 37 | infeq1d 9236 |
. 2
⊢ (𝜑 → inf({𝑦 ∈ ℝ* ∣
∃𝑓 ∈ (( ≤
∩ (ℝ × ℝ)) ↑m ℕ)(𝐴 ⊆ ∪ ran
((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs
∘ − ) ∘ 𝑓)), ℝ*, < ))},
ℝ*, < ) = inf(𝑀, ℝ*, <
)) |
39 | 4, 38 | eqtrd 2778 |
1
⊢ (𝜑 → (vol*‘𝐴) = inf(𝑀, ℝ*, <
)) |