Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxr Structured version   Visualization version   GIF version

Theorem infxr 45363
Description: The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infxr.x 𝑥𝜑
infxr.y 𝑦𝜑
infxr.a (𝜑𝐴 ⊆ ℝ*)
infxr.b (𝜑𝐵 ∈ ℝ*)
infxr.n (𝜑 → ∀𝑥𝐴 ¬ 𝑥 < 𝐵)
infxr.e (𝜑 → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
Assertion
Ref Expression
infxr (𝜑 → inf(𝐴, ℝ*, < ) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infxr
StepHypRef Expression
1 infxr.b . 2 (𝜑𝐵 ∈ ℝ*)
2 infxr.n . 2 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 < 𝐵)
3 infxr.x . . 3 𝑥𝜑
4 infxr.e . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
54r19.21bi 3229 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
65adantlr 715 . . . . 5 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
7 simplll 774 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝜑)
8 simpllr 775 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
9 simplr 768 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → ¬ 𝑥 ∈ ℝ)
10 mnfxr 11231 . . . . . . . . . . 11 -∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ ∈ ℝ*)
12 simplr 768 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
131ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
14 mnfle 13095 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
151, 14syl 17 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ 𝐵)
1615ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ ≤ 𝐵)
17 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
1811, 13, 12, 16, 17xrlelttrd 13120 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ < 𝑥)
1911, 12, 18xrgtned 45318 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝑥 ≠ -∞)
2019adantlr 715 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ≠ -∞)
218, 9, 20xrnmnfpnf 45077 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 = +∞)
22 simpr 484 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
23 simpl 482 . . . . . . . . . . . 12 ((𝜑𝐵 = -∞) → 𝜑)
24 id 22 . . . . . . . . . . . . . 14 (𝐵 = -∞ → 𝐵 = -∞)
25 1re 11174 . . . . . . . . . . . . . . 15 1 ∈ ℝ
26 mnflt 13083 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → -∞ < 1)
2725, 26ax-mp 5 . . . . . . . . . . . . . 14 -∞ < 1
2824, 27eqbrtrdi 5146 . . . . . . . . . . . . 13 (𝐵 = -∞ → 𝐵 < 1)
2928adantl 481 . . . . . . . . . . . 12 ((𝜑𝐵 = -∞) → 𝐵 < 1)
30 1red 11175 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
31 breq2 5111 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐵 < 𝑥𝐵 < 1))
32 breq2 5111 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
3332rexbidv 3157 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (∃𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑦 < 1))
3431, 33imbi12d 344 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥) ↔ (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1)))
3534rspcva 3586 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1))
3630, 4, 35syl2anc 584 . . . . . . . . . . . 12 (𝜑 → (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1))
3723, 29, 36sylc 65 . . . . . . . . . . 11 ((𝜑𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 1)
3837adantlr 715 . . . . . . . . . 10 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 1)
39 infxr.y . . . . . . . . . . . . 13 𝑦𝜑
40 nfv 1914 . . . . . . . . . . . . 13 𝑦 𝑥 = +∞
4139, 40nfan 1899 . . . . . . . . . . . 12 𝑦(𝜑𝑥 = +∞)
42 infxr.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ*)
4342sselda 3946 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
4443ad4ant13 751 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 ∈ ℝ*)
45 1xr 11233 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4645a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 1 ∈ ℝ*)
47 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → 𝑥 = +∞)
48 pnfxr 11228 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
4947, 48eqeltrdi 2836 . . . . . . . . . . . . . . . . 17 (𝑥 = +∞ → 𝑥 ∈ ℝ*)
5049adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = +∞) → 𝑥 ∈ ℝ*)
5150ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑥 ∈ ℝ*)
52 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 < 1)
53 ltpnf 13080 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5425, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → 1 < +∞)
5647eqcomd 2735 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → +∞ = 𝑥)
5755, 56breqtrd 5133 . . . . . . . . . . . . . . . . 17 (𝑥 = +∞ → 1 < 𝑥)
5857adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = +∞) → 1 < 𝑥)
5958ad2antrr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 1 < 𝑥)
6044, 46, 51, 52, 59xrlttrd 13119 . . . . . . . . . . . . . 14 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 < 𝑥)
6160ex 412 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞) ∧ 𝑦𝐴) → (𝑦 < 1 → 𝑦 < 𝑥))
6261ex 412 . . . . . . . . . . . 12 ((𝜑𝑥 = +∞) → (𝑦𝐴 → (𝑦 < 1 → 𝑦 < 𝑥)))
6341, 62reximdai 3239 . . . . . . . . . . 11 ((𝜑𝑥 = +∞) → (∃𝑦𝐴 𝑦 < 1 → ∃𝑦𝐴 𝑦 < 𝑥))
6463adantr 480 . . . . . . . . . 10 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → (∃𝑦𝐴 𝑦 < 1 → ∃𝑦𝐴 𝑦 < 𝑥))
6538, 64mpd 15 . . . . . . . . 9 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
66653adantl3 1169 . . . . . . . 8 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
671adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
68673ad2antl1 1186 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6924necon3bi 2951 . . . . . . . . . . . . . 14 𝐵 = -∞ → 𝐵 ≠ -∞)
7069adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
7148a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → +∞ ∈ ℝ*)
72 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
73 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝑥 = +∞)
7472, 73breqtrd 5133 . . . . . . . . . . . . . . . 16 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < +∞)
75743adant1 1130 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < +∞)
7675adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 < +∞)
7768, 71, 76xrltned 45353 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ +∞)
7868, 70, 77xrred 45361 . . . . . . . . . . . 12 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ)
7925a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 1 ∈ ℝ)
8078, 79readdcld 11203 . . . . . . . . . . 11 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) ∈ ℝ)
814adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = -∞) → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
82813ad2antl1 1186 . . . . . . . . . . 11 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
8380, 82jca 511 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ((𝐵 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)))
8478ltp1d 12113 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 < (𝐵 + 1))
85 breq2 5111 . . . . . . . . . . . 12 (𝑥 = (𝐵 + 1) → (𝐵 < 𝑥𝐵 < (𝐵 + 1)))
86 breq2 5111 . . . . . . . . . . . . 13 (𝑥 = (𝐵 + 1) → (𝑦 < 𝑥𝑦 < (𝐵 + 1)))
8786rexbidv 3157 . . . . . . . . . . . 12 (𝑥 = (𝐵 + 1) → (∃𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑦 < (𝐵 + 1)))
8885, 87imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝐵 + 1) → ((𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥) ↔ (𝐵 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < (𝐵 + 1))))
8988rspcva 3586 . . . . . . . . . 10 (((𝐵 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → (𝐵 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < (𝐵 + 1)))
9083, 84, 89sylc 65 . . . . . . . . 9 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < (𝐵 + 1))
91 nfv 1914 . . . . . . . . . . . 12 𝑦 𝐵 < 𝑥
9239, 40, 91nf3an 1901 . . . . . . . . . . 11 𝑦(𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥)
93 nfv 1914 . . . . . . . . . . 11 𝑦 ¬ 𝐵 = -∞
9492, 93nfan 1899 . . . . . . . . . 10 𝑦((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞)
95433ad2antl1 1186 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
9695ad4ant13 751 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 ∈ ℝ*)
9780adantr 480 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝐵 + 1) ∈ ℝ)
9897rexrd 11224 . . . . . . . . . . . . . 14 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝐵 + 1) ∈ ℝ*)
9998adantr 480 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → (𝐵 + 1) ∈ ℝ*)
100503adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
101100ad3antrrr 730 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑥 ∈ ℝ*)
102 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 < (𝐵 + 1))
10380ltpnfd 13081 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) < +∞)
10456adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 = +∞ ∧ ¬ 𝐵 = -∞) → +∞ = 𝑥)
1051043ad2antl2 1187 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → +∞ = 𝑥)
106103, 105breqtrd 5133 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) < 𝑥)
107106ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → (𝐵 + 1) < 𝑥)
10896, 99, 101, 102, 107xrlttrd 13119 . . . . . . . . . . . 12 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 < 𝑥)
109108ex 412 . . . . . . . . . . 11 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝑦 < (𝐵 + 1) → 𝑦 < 𝑥))
110109ex 412 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝑦𝐴 → (𝑦 < (𝐵 + 1) → 𝑦 < 𝑥)))
11194, 110reximdai 3239 . . . . . . . . 9 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (∃𝑦𝐴 𝑦 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < 𝑥))
11290, 111mpd 15 . . . . . . . 8 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
11366, 112pm2.61dan 812 . . . . . . 7 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥)
1147, 21, 22, 113syl3anc 1373 . . . . . 6 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥)
115114ex 412 . . . . 5 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
1166, 115pm2.61dan 812 . . . 4 ((𝜑𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
117116ex 412 . . 3 (𝜑 → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)))
1183, 117ralrimi 3235 . 2 (𝜑 → ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
119 xrltso 13101 . . . . 5 < Or ℝ*
120119a1i 11 . . . 4 (⊤ → < Or ℝ*)
121120eqinf 9436 . . 3 (⊤ → ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝑥 < 𝐵 ∧ ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → inf(𝐴, ℝ*, < ) = 𝐵))
122121mptru 1547 . 2 ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝑥 < 𝐵 ∧ ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → inf(𝐴, ℝ*, < ) = 𝐵)
1231, 2, 118, 122syl3anc 1373 1 (𝜑 → inf(𝐴, ℝ*, < ) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wtru 1541  wnf 1783  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  (class class class)co 7387  infcinf 9392  cr 11067  1c1 11069   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  infxrunb2  45364
  Copyright terms: Public domain W3C validator