![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpss12 | Structured version Visualization version GIF version |
Description: Subset theorem for Cartesian product. Generalization of Theorem 101 of [Suppes] p. 52. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
xpss12 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3792 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | ssel 3792 | . . . 4 ⊢ (𝐶 ⊆ 𝐷 → (𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) | |
3 | 1, 2 | im2anan9 614 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷))) |
4 | 3 | ssopab2dv 5200 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} ⊆ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)}) |
5 | df-xp 5318 | . 2 ⊢ (𝐴 × 𝐶) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐶)} | |
6 | df-xp 5318 | . 2 ⊢ (𝐵 × 𝐷) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷)} | |
7 | 4, 5, 6 | 3sstr4g 3842 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 ⊆ wss 3769 {copab 4905 × cxp 5310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-in 3776 df-ss 3783 df-opab 4906 df-xp 5318 |
This theorem is referenced by: xpss 5328 inxpssres 5329 xpss1 5331 xpss2 5332 djussxp 5471 ssxpb 5785 cossxp 5877 relrelss 5878 fssxp 6275 oprabss 6980 oprres 7036 pmss12g 8122 marypha1lem 8581 marypha2lem1 8583 hartogslem1 8689 infxpenlem 9122 dfac5lem4 9235 axdc4lem 9565 fpwwe2lem1 9741 fpwwe2lem11 9750 fpwwe2lem12 9751 fpwwe2lem13 9752 canthwe 9761 tskxpss 9882 dmaddpi 10000 dmmulpi 10001 addnqf 10058 mulnqf 10059 rexpssxrxp 10373 ltrelxr 10389 mulnzcnopr 10965 dfz2 11684 elq 12035 leiso 13492 znnen 15277 phimullem 15817 imasless 16515 sscpwex 16789 fullsubc 16824 fullresc 16825 wunfunc 16873 funcres2c 16875 homaf 16994 dmcoass 17030 catcoppccl 17072 catcfuccl 17073 catcxpccl 17162 znleval 20224 txuni2 21697 txbas 21699 txcld 21735 txcls 21736 neitx 21739 txcnp 21752 txlly 21768 txnlly 21769 hausdiag 21777 tx1stc 21782 txkgen 21784 xkococnlem 21791 cnmpt2res 21809 clssubg 22240 tsmsxplem1 22284 tsmsxplem2 22285 tsmsxp 22286 trust 22361 ustuqtop1 22373 psmetres2 22447 xmetres2 22494 metres2 22496 ressprdsds 22504 xmetresbl 22570 ressxms 22658 metustexhalf 22689 cfilucfil 22692 restmetu 22703 nrginvrcn 22824 qtopbaslem 22890 tgqioo 22931 re2ndc 22932 resubmet 22933 xrsdsre 22941 bndth 23085 lebnumii 23093 iscfil2 23392 cmssmscld 23476 cmsss 23477 cmscsscms 23499 minveclem3a 23537 ovolfsf 23579 opnmblALT 23711 mbfimaopnlem 23763 itg1addlem4 23807 limccnp2 23997 taylfval 24454 taylf 24456 dvdsmulf1o 25272 fsumdvdsmul 25273 sspg 28108 ssps 28110 sspmlem 28112 issh2 28591 hhssabloilem 28643 hhssabloi 28644 hhssnv 28646 hhshsslem1 28649 shsel 28698 ofrn2 29961 gtiso 29996 xrofsup 30051 fimaproj 30416 txomap 30417 tpr2rico 30474 prsss 30478 raddcn 30491 xrge0pluscn 30502 br2base 30847 dya2iocnrect 30859 dya2iocucvr 30862 eulerpartlemgh 30956 eulerpartlemgs2 30958 cvmlift2lem9 31810 cvmlift2lem10 31811 cvmlift2lem11 31812 cvmlift2lem12 31813 mpstssv 31953 elxp8 33717 mblfinlem2 33936 ftc1anc 33981 ssbnd 34074 prdsbnd2 34081 cnpwstotbnd 34083 reheibor 34125 exidreslem 34163 divrngcl 34243 isdrngo2 34244 dibss 37190 xppss12 38037 arearect 38585 rtrclex 38707 rtrclexi 38711 rp-imass 38847 idhe 38863 rr2sscn2 40326 fourierdlem42 41109 opnvonmbllem2 41593 rnghmresfn 42762 rnghmsscmap2 42772 rnghmsscmap 42773 rhmresfn 42808 rhmsscmap2 42818 rhmsscmap 42819 rhmsscrnghm 42825 rngcrescrhm 42884 rngcrescrhmALTV 42902 |
Copyright terms: Public domain | W3C validator |