Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrred Structured version   Visualization version   GIF version

Theorem xrred 42836
Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrred.1 (𝜑𝐴 ∈ ℝ*)
xrred.2 (𝜑𝐴 ≠ -∞)
xrred.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrred (𝜑𝐴 ∈ ℝ)

Proof of Theorem xrred
StepHypRef Expression
1 xrred.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrred.2 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 511 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 12798 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 217 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrred.3 . . 3 (𝜑𝐴 ≠ +∞)
76neneqd 2946 . 2 (𝜑 → ¬ 𝐴 = +∞)
8 pm2.53 847 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
98con1d 145 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ))
105, 7, 9sylc 65 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2107  wne 2941  cr 10817  +∞cpnf 10953  -∞cmnf 10954  *cxr 10955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-cnex 10874  ax-resscn 10875
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-pnf 10958  df-mnf 10959  df-xr 10960
This theorem is referenced by:  infxr  42838  infleinflem2  42842  xrralrecnnge  42862  xrre4  42883  supminfxr2  42941  xrpnf  42958  climxrrelem  43222  climxrre  43223  liminflimsupxrre  43290  ioorrnopnxrlem  43779  pimiooltgt  44177  smfpimltxr  44212  smfpimgtxr  44244
  Copyright terms: Public domain W3C validator