| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrred | Structured version Visualization version GIF version | ||
| Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| xrred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrred.2 | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| xrred.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Ref | Expression |
|---|---|
| xrred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrred.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrred.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
| 4 | xrnemnf 13013 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| 6 | xrred.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
| 7 | 6 | neneqd 2933 | . 2 ⊢ (𝜑 → ¬ 𝐴 = +∞) |
| 8 | pm2.53 851 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞)) | |
| 9 | 8 | con1d 145 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ)) |
| 10 | 5, 7, 9 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ℝcr 11002 +∞cpnf 11140 -∞cmnf 11141 ℝ*cxr 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 |
| This theorem is referenced by: infxr 45404 infleinflem2 45408 xrralrecnnge 45427 xrre4 45448 supminfxr2 45506 xrpnf 45522 climxrrelem 45786 climxrre 45787 liminflimsupxrre 45854 ioorrnopnxrlem 46343 pimiooltgt 46747 smfpimltxr 46784 smfpimgtxr 46817 |
| Copyright terms: Public domain | W3C validator |