| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrred | Structured version Visualization version GIF version | ||
| Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| xrred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
| xrred.2 | ⊢ (𝜑 → 𝐴 ≠ -∞) |
| xrred.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Ref | Expression |
|---|---|
| xrred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrred.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
| 2 | xrred.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ -∞) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
| 4 | xrnemnf 13131 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
| 5 | 3, 4 | sylib 218 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
| 6 | xrred.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
| 7 | 6 | neneqd 2937 | . 2 ⊢ (𝜑 → ¬ 𝐴 = +∞) |
| 8 | pm2.53 851 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞)) | |
| 9 | 8 | con1d 145 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ)) |
| 10 | 5, 7, 9 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ℝcr 11126 +∞cpnf 11264 -∞cmnf 11265 ℝ*cxr 11266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 |
| This theorem is referenced by: infxr 45342 infleinflem2 45346 xrralrecnnge 45365 xrre4 45386 supminfxr2 45444 xrpnf 45460 climxrrelem 45726 climxrre 45727 liminflimsupxrre 45794 ioorrnopnxrlem 46283 pimiooltgt 46687 smfpimltxr 46724 smfpimgtxr 46757 |
| Copyright terms: Public domain | W3C validator |