![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrred | Structured version Visualization version GIF version |
Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
xrred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrred.2 | ⊢ (𝜑 → 𝐴 ≠ -∞) |
xrred.3 | ⊢ (𝜑 → 𝐴 ≠ +∞) |
Ref | Expression |
---|---|
xrred | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrred.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
2 | xrred.2 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ -∞) | |
3 | 1, 2 | jca 512 | . . 3 ⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞)) |
4 | xrnemnf 13096 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) | |
5 | 3, 4 | sylib 217 | . 2 ⊢ (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞)) |
6 | xrred.3 | . . 3 ⊢ (𝜑 → 𝐴 ≠ +∞) | |
7 | 6 | neneqd 2945 | . 2 ⊢ (𝜑 → ¬ 𝐴 = +∞) |
8 | pm2.53 849 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞)) | |
9 | 8 | con1d 145 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ)) |
10 | 5, 7, 9 | sylc 65 | 1 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ℝcr 11108 +∞cpnf 11244 -∞cmnf 11245 ℝ*cxr 11246 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 |
This theorem is referenced by: infxr 44067 infleinflem2 44071 xrralrecnnge 44090 xrre4 44111 supminfxr2 44169 xrpnf 44186 climxrrelem 44455 climxrre 44456 liminflimsupxrre 44523 ioorrnopnxrlem 45012 pimiooltgt 45416 smfpimltxr 45453 smfpimgtxr 45486 |
Copyright terms: Public domain | W3C validator |