Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrred Structured version   Visualization version   GIF version

Theorem xrred 40325
Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrred.1 (𝜑𝐴 ∈ ℝ*)
xrred.2 (𝜑𝐴 ≠ -∞)
xrred.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrred (𝜑𝐴 ∈ ℝ)

Proof of Theorem xrred
StepHypRef Expression
1 xrred.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrred.2 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 508 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 12198 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 210 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrred.3 . . 3 (𝜑𝐴 ≠ +∞)
76neneqd 2976 . 2 (𝜑 → ¬ 𝐴 = +∞)
8 pm2.53 878 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
98con1d 142 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ))
105, 7, 9sylc 65 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  wo 874   = wceq 1653  wcel 2157  wne 2971  cr 10223  +∞cpnf 10360  -∞cmnf 10361  *cxr 10362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367
This theorem is referenced by:  infxr  40327  infleinflem2  40331  xrralrecnnge  40356  xrre4  40381  supminfxr2  40442  xrpnf  40459  climxrrelem  40725  climxrre  40726  ioorrnopnxrlem  41269  pimiooltgt  41667  smfpimltxr  41702  smfpimgtxr  41734
  Copyright terms: Public domain W3C validator