Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrred Structured version   Visualization version   GIF version

Theorem xrred 45345
Description: An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
xrred.1 (𝜑𝐴 ∈ ℝ*)
xrred.2 (𝜑𝐴 ≠ -∞)
xrred.3 (𝜑𝐴 ≠ +∞)
Assertion
Ref Expression
xrred (𝜑𝐴 ∈ ℝ)

Proof of Theorem xrred
StepHypRef Expression
1 xrred.1 . . . 4 (𝜑𝐴 ∈ ℝ*)
2 xrred.2 . . . 4 (𝜑𝐴 ≠ -∞)
31, 2jca 511 . . 3 (𝜑 → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
4 xrnemnf 13037 . . 3 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
53, 4sylib 218 . 2 (𝜑 → (𝐴 ∈ ℝ ∨ 𝐴 = +∞))
6 xrred.3 . . 3 (𝜑𝐴 ≠ +∞)
76neneqd 2930 . 2 (𝜑 → ¬ 𝐴 = +∞)
8 pm2.53 851 . . 3 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 ∈ ℝ → 𝐴 = +∞))
98con1d 145 . 2 ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) → (¬ 𝐴 = +∞ → 𝐴 ∈ ℝ))
105, 7, 9sylc 65 1 (𝜑𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cr 11027  +∞cpnf 11165  -∞cmnf 11166  *cxr 11167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172
This theorem is referenced by:  infxr  45347  infleinflem2  45351  xrralrecnnge  45370  xrre4  45391  supminfxr2  45449  xrpnf  45465  climxrrelem  45731  climxrre  45732  liminflimsupxrre  45799  ioorrnopnxrlem  46288  pimiooltgt  46692  smfpimltxr  46729  smfpimgtxr  46762
  Copyright terms: Public domain W3C validator