![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcdf | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020.) |
Ref | Expression |
---|---|
rspcdf.1 | ⊢ Ⅎ𝑥𝜑 |
rspcdf.2 | ⊢ Ⅎ𝑥𝜒 |
rspcdf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcdf | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rspcdf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | ex 403 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
4 | 1, 3 | alrimi 2258 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
5 | rspcdf.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
6 | rspcdf.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
7 | 6 | rspct 3520 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒))) |
8 | 4, 5, 7 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1656 = wceq 1658 Ⅎwnf 1884 ∈ wcel 2166 ∀wral 3118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2804 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ral 3123 df-v 3417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |