MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcdf Structured version   Visualization version   GIF version

Theorem rspcdf 3538
Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020.)
Hypotheses
Ref Expression
rspcdf.1 𝑥𝜑
rspcdf.2 𝑥𝜒
rspcdf.3 (𝜑𝐴𝐵)
rspcdf.4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcdf (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rspcdf
StepHypRef Expression
1 rspcdf.1 . . 3 𝑥𝜑
2 rspcdf.4 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32ex 412 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
41, 3alrimi 2209 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
5 rspcdf.3 . 2 (𝜑𝐴𝐵)
6 rspcdf.2 . . 3 𝑥𝜒
76rspct 3537 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝐵 𝜓𝜒)))
84, 5, 7sylc 65 1 (𝜑 → (∀𝑥𝐵 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wnf 1787  wcel 2108  wral 3063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-v 3424
This theorem is referenced by:  rspc2daf  30717
  Copyright terms: Public domain W3C validator