MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspct Structured version   Visualization version   GIF version

Theorem rspct 3598
Description: A closed version of rspc 3600. (Contributed by Andrew Salmon, 6-Jun-2011.)
Hypothesis
Ref Expression
rspct.1 𝑥𝜓
Assertion
Ref Expression
rspct (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem rspct
StepHypRef Expression
1 df-ral 3062 . . . 4 (∀𝑥𝐵 𝜑 ↔ ∀𝑥(𝑥𝐵𝜑))
2 eleq1 2821 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑥𝐵𝐴𝐵))
32adantr 481 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝑥𝐵𝐴𝐵))
4 simpr 485 . . . . . . . . 9 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → (𝜑𝜓))
53, 4imbi12d 344 . . . . . . . 8 ((𝑥 = 𝐴 ∧ (𝜑𝜓)) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓)))
65ex 413 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑𝜓) → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
76a2i 14 . . . . . 6 ((𝑥 = 𝐴 → (𝜑𝜓)) → (𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
87alimi 1813 . . . . 5 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → ∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))))
9 nfv 1917 . . . . . . 7 𝑥 𝐴𝐵
10 rspct.1 . . . . . . 7 𝑥𝜓
119, 10nfim 1899 . . . . . 6 𝑥(𝐴𝐵𝜓)
12 nfcv 2903 . . . . . 6 𝑥𝐴
1311, 12spcgft 3578 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ((𝑥𝐵𝜑) ↔ (𝐴𝐵𝜓))) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
148, 13syl 17 . . . 4 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥(𝑥𝐵𝜑) → (𝐴𝐵𝜓))))
151, 14syl7bi 254 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))))
1615com34 91 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓))))
1716pm2.43d 53 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝐵 → (∀𝑥𝐵 𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wnf 1785  wcel 2106  wral 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-v 3476
This theorem is referenced by:  rspcdf  3599
  Copyright terms: Public domain W3C validator