| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3049 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2821 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3542 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 ∀wral 3048 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 |
| This theorem is referenced by: rspc2 3582 rspc2vd 3894 disjxiun 5090 pofun 5545 fmptcof 7069 fliftfuns 7254 ofmpteq 7639 tfisg 7790 qliftfuns 8734 xpf1o 9059 iunfi 9234 iundom2g 10438 lble 12081 rlimcld2 15487 sumeq2ii 15602 summolem3 15623 zsum 15627 fsum 15629 fsumf1o 15632 sumss2 15635 fsumcvg2 15636 fsumadd 15649 isummulc2 15671 fsum2dlem 15679 fsumcom2 15683 fsumshftm 15690 fsum0diag2 15692 fsummulc2 15693 fsum00 15707 fsumabs 15710 fsumrelem 15716 fsumrlim 15720 fsumo1 15721 o1fsum 15722 fsumiun 15730 isumshft 15748 prodeq2ii 15820 prodmolem3 15842 zprod 15846 fprod 15850 fprodf1o 15855 prodss 15856 fprodser 15858 fprodmul 15869 fproddiv 15870 fprodm1s 15879 fprodp1s 15880 fprodabs 15883 fprod2dlem 15889 fprodcom2 15893 fprodefsum 16004 sumeven 16300 sumodd 16301 pcmpt 16806 invfuc 17886 dprd2d2 19960 txcnp 23536 ptcnplem 23537 prdsdsf 24283 prdsxmet 24285 fsumcn 24789 ovolfiniun 25430 ovoliunnul 25436 volfiniun 25476 iunmbl 25482 limciun 25823 dvfsumle 25954 dvfsumleOLD 25955 dvfsumabs 25957 dvfsumlem1 25960 dvfsumlem3 25963 dvfsumlem4 25964 dvfsumrlim 25966 dvfsumrlim2 25967 dvfsum2 25969 itgsubst 25984 fsumvma 27152 dchrisumlema 27427 dchrisumlem2 27429 dchrisumlem3 27430 nosupbnd1 27654 noinfbnd1 27669 chirred 32377 fsumiunle 32817 sigapildsyslem 34195 voliune 34263 volfiniune 34264 ptrest 37680 poimirlem25 37706 poimirlem26 37707 mzpsubst 42866 rabdiophlem2 42920 cvgcaule 45614 etransclem48 46405 sge0iunmpt 46541 2reu8i 47238 |
| Copyright terms: Public domain | W3C validator |