![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2902 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1911 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1893 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3590 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1534 = wceq 1536 Ⅎwnf 1779 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1776 df-nf 1780 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 |
This theorem is referenced by: rspc2 3630 rspc2vd 3958 disjxiun 5144 pofun 5614 fmptcof 7149 fliftfuns 7333 ofmpteq 7719 tfisg 7874 qliftfuns 8842 xpf1o 9177 iunfi 9380 iundom2g 10577 lble 12217 rlimcld2 15610 sumeq2ii 15725 summolem3 15746 zsum 15750 fsum 15752 fsumf1o 15755 sumss2 15758 fsumcvg2 15759 fsumadd 15772 isummulc2 15794 fsum2dlem 15802 fsumcom2 15806 fsumshftm 15813 fsum0diag2 15815 fsummulc2 15816 fsum00 15830 fsumabs 15833 fsumrelem 15839 fsumrlim 15843 fsumo1 15844 o1fsum 15845 fsumiun 15853 isumshft 15871 prodeq2ii 15943 prodmolem3 15965 zprod 15969 fprod 15973 fprodf1o 15978 prodss 15979 fprodser 15981 fprodmul 15992 fproddiv 15993 fprodm1s 16002 fprodp1s 16003 fprodabs 16006 fprod2dlem 16012 fprodcom2 16016 fprodefsum 16127 sumeven 16420 sumodd 16421 pcmpt 16925 invfuc 18030 dprd2d2 20078 txcnp 23643 ptcnplem 23644 prdsdsf 24392 prdsxmet 24394 fsumcn 24907 ovolfiniun 25549 ovoliunnul 25555 volfiniun 25595 iunmbl 25601 limciun 25943 dvfsumle 26074 dvfsumleOLD 26075 dvfsumabs 26077 dvfsumlem1 26080 dvfsumlem3 26083 dvfsumlem4 26084 dvfsumrlim 26086 dvfsumrlim2 26087 dvfsum2 26089 itgsubst 26104 fsumvma 27271 dchrisumlema 27546 dchrisumlem2 27548 dchrisumlem3 27549 nosupbnd1 27773 noinfbnd1 27788 chirred 32423 fsumiunle 32835 sigapildsyslem 34141 voliune 34209 volfiniune 34210 ptrest 37605 poimirlem25 37631 poimirlem26 37632 mzpsubst 42735 rabdiophlem2 42789 cvgcaule 45441 etransclem48 46237 sge0iunmpt 46373 2reu8i 47062 |
Copyright terms: Public domain | W3C validator |