| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3557 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: rspc2 3597 rspc2vd 3910 disjxiun 5104 pofun 5564 fmptcof 7102 fliftfuns 7289 ofmpteq 7676 tfisg 7830 qliftfuns 8777 xpf1o 9103 iunfi 9294 iundom2g 10493 lble 12135 rlimcld2 15544 sumeq2ii 15659 summolem3 15680 zsum 15684 fsum 15686 fsumf1o 15689 sumss2 15692 fsumcvg2 15693 fsumadd 15706 isummulc2 15728 fsum2dlem 15736 fsumcom2 15740 fsumshftm 15747 fsum0diag2 15749 fsummulc2 15750 fsum00 15764 fsumabs 15767 fsumrelem 15773 fsumrlim 15777 fsumo1 15778 o1fsum 15779 fsumiun 15787 isumshft 15805 prodeq2ii 15877 prodmolem3 15899 zprod 15903 fprod 15907 fprodf1o 15912 prodss 15913 fprodser 15915 fprodmul 15926 fproddiv 15927 fprodm1s 15936 fprodp1s 15937 fprodabs 15940 fprod2dlem 15946 fprodcom2 15950 fprodefsum 16061 sumeven 16357 sumodd 16358 pcmpt 16863 invfuc 17939 dprd2d2 19976 txcnp 23507 ptcnplem 23508 prdsdsf 24255 prdsxmet 24257 fsumcn 24761 ovolfiniun 25402 ovoliunnul 25408 volfiniun 25448 iunmbl 25454 limciun 25795 dvfsumle 25926 dvfsumleOLD 25927 dvfsumabs 25929 dvfsumlem1 25932 dvfsumlem3 25935 dvfsumlem4 25936 dvfsumrlim 25938 dvfsumrlim2 25939 dvfsum2 25941 itgsubst 25956 fsumvma 27124 dchrisumlema 27399 dchrisumlem2 27401 dchrisumlem3 27402 nosupbnd1 27626 noinfbnd1 27641 chirred 32324 fsumiunle 32754 sigapildsyslem 34151 voliune 34219 volfiniune 34220 ptrest 37613 poimirlem25 37639 poimirlem26 37640 mzpsubst 42736 rabdiophlem2 42790 cvgcaule 45487 etransclem48 46280 sge0iunmpt 46416 2reu8i 47114 |
| Copyright terms: Public domain | W3C validator |