![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1895 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2832 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3604 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 |
This theorem is referenced by: rspc2 3644 rspc2vd 3972 disjxiun 5163 pofun 5626 fmptcof 7164 fliftfuns 7350 ofmpteq 7736 tfisg 7891 qliftfuns 8862 xpf1o 9205 iunfi 9411 iundom2g 10609 lble 12247 rlimcld2 15624 sumeq2ii 15741 summolem3 15762 zsum 15766 fsum 15768 fsumf1o 15771 sumss2 15774 fsumcvg2 15775 fsumadd 15788 isummulc2 15810 fsum2dlem 15818 fsumcom2 15822 fsumshftm 15829 fsum0diag2 15831 fsummulc2 15832 fsum00 15846 fsumabs 15849 fsumrelem 15855 fsumrlim 15859 fsumo1 15860 o1fsum 15861 fsumiun 15869 isumshft 15887 prodeq2ii 15959 prodmolem3 15981 zprod 15985 fprod 15989 fprodf1o 15994 prodss 15995 fprodser 15997 fprodmul 16008 fproddiv 16009 fprodm1s 16018 fprodp1s 16019 fprodabs 16022 fprod2dlem 16028 fprodcom2 16032 fprodefsum 16143 sumeven 16435 sumodd 16436 pcmpt 16939 invfuc 18044 dprd2d2 20088 txcnp 23649 ptcnplem 23650 prdsdsf 24398 prdsxmet 24400 fsumcn 24913 ovolfiniun 25555 ovoliunnul 25561 volfiniun 25601 iunmbl 25607 limciun 25949 dvfsumle 26080 dvfsumleOLD 26081 dvfsumabs 26083 dvfsumlem1 26086 dvfsumlem3 26089 dvfsumlem4 26090 dvfsumrlim 26092 dvfsumrlim2 26093 dvfsum2 26095 itgsubst 26110 fsumvma 27275 dchrisumlema 27550 dchrisumlem2 27552 dchrisumlem3 27553 nosupbnd1 27777 noinfbnd1 27792 chirred 32427 fsumiunle 32833 sigapildsyslem 34125 voliune 34193 volfiniune 34194 ptrest 37579 poimirlem25 37605 poimirlem26 37606 mzpsubst 42704 rabdiophlem2 42758 cvgcaule 45407 etransclem48 46203 sge0iunmpt 46339 2reu8i 47028 |
Copyright terms: Public domain | W3C validator |