| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3570 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 |
| This theorem is referenced by: rspc2 3610 rspc2vd 3922 disjxiun 5116 pofun 5579 fmptcof 7119 fliftfuns 7306 ofmpteq 7692 tfisg 7847 qliftfuns 8816 xpf1o 9151 iunfi 9353 iundom2g 10552 lble 12192 rlimcld2 15592 sumeq2ii 15707 summolem3 15728 zsum 15732 fsum 15734 fsumf1o 15737 sumss2 15740 fsumcvg2 15741 fsumadd 15754 isummulc2 15776 fsum2dlem 15784 fsumcom2 15788 fsumshftm 15795 fsum0diag2 15797 fsummulc2 15798 fsum00 15812 fsumabs 15815 fsumrelem 15821 fsumrlim 15825 fsumo1 15826 o1fsum 15827 fsumiun 15835 isumshft 15853 prodeq2ii 15925 prodmolem3 15947 zprod 15951 fprod 15955 fprodf1o 15960 prodss 15961 fprodser 15963 fprodmul 15974 fproddiv 15975 fprodm1s 15984 fprodp1s 15985 fprodabs 15988 fprod2dlem 15994 fprodcom2 15998 fprodefsum 16109 sumeven 16404 sumodd 16405 pcmpt 16910 invfuc 17988 dprd2d2 20025 txcnp 23556 ptcnplem 23557 prdsdsf 24304 prdsxmet 24306 fsumcn 24810 ovolfiniun 25452 ovoliunnul 25458 volfiniun 25498 iunmbl 25504 limciun 25845 dvfsumle 25976 dvfsumleOLD 25977 dvfsumabs 25979 dvfsumlem1 25982 dvfsumlem3 25985 dvfsumlem4 25986 dvfsumrlim 25988 dvfsumrlim2 25989 dvfsum2 25991 itgsubst 26006 fsumvma 27174 dchrisumlema 27449 dchrisumlem2 27451 dchrisumlem3 27452 nosupbnd1 27676 noinfbnd1 27691 chirred 32322 fsumiunle 32754 sigapildsyslem 34138 voliune 34206 volfiniune 34207 ptrest 37589 poimirlem25 37615 poimirlem26 37616 mzpsubst 42718 rabdiophlem2 42772 cvgcaule 45466 etransclem48 46259 sge0iunmpt 46395 2reu8i 47090 |
| Copyright terms: Public domain | W3C validator |