![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2822 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3582 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-v 3477 |
This theorem is referenced by: rspc2 3621 rspc2vd 3945 disjxiun 5146 pofun 5607 fmptcof 7128 fliftfuns 7311 ofmpteq 7692 tfisg 7843 qliftfuns 8798 xpf1o 9139 iunfi 9340 iundom2g 10535 lble 12166 rlimcld2 15522 sumeq2ii 15639 summolem3 15660 zsum 15664 fsum 15666 fsumf1o 15669 sumss2 15672 fsumcvg2 15673 fsumadd 15686 isummulc2 15708 fsum2dlem 15716 fsumcom2 15720 fsumshftm 15727 fsum0diag2 15729 fsummulc2 15730 fsum00 15744 fsumabs 15747 fsumrelem 15753 fsumrlim 15757 fsumo1 15758 o1fsum 15759 fsumiun 15767 isumshft 15785 prodeq2ii 15857 prodmolem3 15877 zprod 15881 fprod 15885 fprodf1o 15890 prodss 15891 fprodser 15893 fprodmul 15904 fproddiv 15905 fprodm1s 15914 fprodp1s 15915 fprodabs 15918 fprod2dlem 15924 fprodcom2 15928 fprodefsum 16038 sumeven 16330 sumodd 16331 pcmpt 16825 invfuc 17927 dprd2d2 19914 txcnp 23124 ptcnplem 23125 prdsdsf 23873 prdsxmet 23875 fsumcn 24386 ovolfiniun 25018 ovoliunnul 25024 volfiniun 25064 iunmbl 25070 limciun 25411 dvfsumle 25538 dvfsumabs 25540 dvfsumlem1 25543 dvfsumlem3 25545 dvfsumlem4 25546 dvfsumrlim 25548 dvfsumrlim2 25549 dvfsum2 25551 itgsubst 25566 fsumvma 26716 dchrisumlema 26991 dchrisumlem2 26993 dchrisumlem3 26994 nosupbnd1 27217 noinfbnd1 27232 chirred 31648 fsumiunle 32035 sigapildsyslem 33159 voliune 33227 volfiniune 33228 gg-dvfsumle 35182 ptrest 36487 poimirlem25 36513 poimirlem26 36514 mzpsubst 41486 rabdiophlem2 41540 cvgcaule 44202 etransclem48 44998 sge0iunmpt 45134 2reu8i 45821 |
Copyright terms: Public domain | W3C validator |