| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2816 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3548 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 |
| This theorem is referenced by: rspc2 3588 rspc2vd 3901 disjxiun 5092 pofun 5549 fmptcof 7068 fliftfuns 7255 ofmpteq 7640 tfisg 7794 qliftfuns 8738 xpf1o 9063 iunfi 9252 iundom2g 10453 lble 12095 rlimcld2 15503 sumeq2ii 15618 summolem3 15639 zsum 15643 fsum 15645 fsumf1o 15648 sumss2 15651 fsumcvg2 15652 fsumadd 15665 isummulc2 15687 fsum2dlem 15695 fsumcom2 15699 fsumshftm 15706 fsum0diag2 15708 fsummulc2 15709 fsum00 15723 fsumabs 15726 fsumrelem 15732 fsumrlim 15736 fsumo1 15737 o1fsum 15738 fsumiun 15746 isumshft 15764 prodeq2ii 15836 prodmolem3 15858 zprod 15862 fprod 15866 fprodf1o 15871 prodss 15872 fprodser 15874 fprodmul 15885 fproddiv 15886 fprodm1s 15895 fprodp1s 15896 fprodabs 15899 fprod2dlem 15905 fprodcom2 15909 fprodefsum 16020 sumeven 16316 sumodd 16317 pcmpt 16822 invfuc 17902 dprd2d2 19943 txcnp 23523 ptcnplem 23524 prdsdsf 24271 prdsxmet 24273 fsumcn 24777 ovolfiniun 25418 ovoliunnul 25424 volfiniun 25464 iunmbl 25470 limciun 25811 dvfsumle 25942 dvfsumleOLD 25943 dvfsumabs 25945 dvfsumlem1 25948 dvfsumlem3 25951 dvfsumlem4 25952 dvfsumrlim 25954 dvfsumrlim2 25955 dvfsum2 25957 itgsubst 25972 fsumvma 27140 dchrisumlema 27415 dchrisumlem2 27417 dchrisumlem3 27418 nosupbnd1 27642 noinfbnd1 27657 chirred 32357 fsumiunle 32787 sigapildsyslem 34127 voliune 34195 volfiniune 34196 ptrest 37598 poimirlem25 37624 poimirlem26 37625 mzpsubst 42721 rabdiophlem2 42775 cvgcaule 45471 etransclem48 46264 sge0iunmpt 46400 2reu8i 47098 |
| Copyright terms: Public domain | W3C validator |