Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1900 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3520 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | syl5bi 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 |
This theorem is referenced by: rspcvOLD 3548 rspc2 3560 rspc2vd 3879 disjxiun 5067 pofun 5512 fmptcof 6984 fliftfuns 7165 ofmpteq 7533 qliftfuns 8551 xpf1o 8875 iunfi 9037 iundom2g 10227 lble 11857 rlimcld2 15215 sumeq2ii 15333 summolem3 15354 zsum 15358 fsum 15360 fsumf1o 15363 sumss2 15366 fsumcvg2 15367 fsumadd 15380 isummulc2 15402 fsum2dlem 15410 fsumcom2 15414 fsumshftm 15421 fsum0diag2 15423 fsummulc2 15424 fsum00 15438 fsumabs 15441 fsumrelem 15447 fsumrlim 15451 fsumo1 15452 o1fsum 15453 fsumiun 15461 isumshft 15479 prodeq2ii 15551 prodmolem3 15571 zprod 15575 fprod 15579 fprodf1o 15584 prodss 15585 fprodser 15587 fprodmul 15598 fproddiv 15599 fprodm1s 15608 fprodp1s 15609 fprodabs 15612 fprod2dlem 15618 fprodcom2 15622 fprodefsum 15732 sumeven 16024 sumodd 16025 pcmpt 16521 invfuc 17608 dprd2d2 19562 txcnp 22679 ptcnplem 22680 prdsdsf 23428 prdsxmet 23430 fsumcn 23939 ovolfiniun 24570 ovoliunnul 24576 volfiniun 24616 iunmbl 24622 limciun 24963 dvfsumle 25090 dvfsumabs 25092 dvfsumlem1 25095 dvfsumlem3 25097 dvfsumlem4 25098 dvfsumrlim 25100 dvfsumrlim2 25101 dvfsum2 25103 itgsubst 25118 fsumvma 26266 dchrisumlema 26541 dchrisumlem2 26543 dchrisumlem3 26544 chirred 30658 fsumiunle 31045 sigapildsyslem 32029 voliune 32097 volfiniune 32098 tfisg 33692 nosupbnd1 33844 noinfbnd1 33859 ptrest 35703 poimirlem25 35729 poimirlem26 35730 mzpsubst 40486 rabdiophlem2 40540 etransclem48 43713 sge0iunmpt 43846 2reu8i 44492 |
Copyright terms: Public domain | W3C validator |