| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1896 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3560 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 |
| This theorem is referenced by: rspc2 3600 rspc2vd 3913 disjxiun 5107 pofun 5567 fmptcof 7105 fliftfuns 7292 ofmpteq 7679 tfisg 7833 qliftfuns 8780 xpf1o 9109 iunfi 9301 iundom2g 10500 lble 12142 rlimcld2 15551 sumeq2ii 15666 summolem3 15687 zsum 15691 fsum 15693 fsumf1o 15696 sumss2 15699 fsumcvg2 15700 fsumadd 15713 isummulc2 15735 fsum2dlem 15743 fsumcom2 15747 fsumshftm 15754 fsum0diag2 15756 fsummulc2 15757 fsum00 15771 fsumabs 15774 fsumrelem 15780 fsumrlim 15784 fsumo1 15785 o1fsum 15786 fsumiun 15794 isumshft 15812 prodeq2ii 15884 prodmolem3 15906 zprod 15910 fprod 15914 fprodf1o 15919 prodss 15920 fprodser 15922 fprodmul 15933 fproddiv 15934 fprodm1s 15943 fprodp1s 15944 fprodabs 15947 fprod2dlem 15953 fprodcom2 15957 fprodefsum 16068 sumeven 16364 sumodd 16365 pcmpt 16870 invfuc 17946 dprd2d2 19983 txcnp 23514 ptcnplem 23515 prdsdsf 24262 prdsxmet 24264 fsumcn 24768 ovolfiniun 25409 ovoliunnul 25415 volfiniun 25455 iunmbl 25461 limciun 25802 dvfsumle 25933 dvfsumleOLD 25934 dvfsumabs 25936 dvfsumlem1 25939 dvfsumlem3 25942 dvfsumlem4 25943 dvfsumrlim 25945 dvfsumrlim2 25946 dvfsum2 25948 itgsubst 25963 fsumvma 27131 dchrisumlema 27406 dchrisumlem2 27408 dchrisumlem3 27409 nosupbnd1 27633 noinfbnd1 27648 chirred 32331 fsumiunle 32761 sigapildsyslem 34158 voliune 34226 volfiniune 34227 ptrest 37620 poimirlem25 37646 poimirlem26 37647 mzpsubst 42743 rabdiophlem2 42797 cvgcaule 45494 etransclem48 46287 sge0iunmpt 46423 2reu8i 47118 |
| Copyright terms: Public domain | W3C validator |