![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
rspc.1 | ⊢ Ⅎ𝑥𝜓 |
rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3059 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfim 1891 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
6 | eleq1 2817 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
8 | 6, 7 | imbi12d 343 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
9 | 2, 5, 8 | spcgf 3580 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
11 | 1, 10 | biimtrid 241 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1531 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-v 3475 |
This theorem is referenced by: rspc2 3620 rspc2vd 3945 disjxiun 5149 pofun 5612 fmptcof 7145 fliftfuns 7328 ofmpteq 7713 tfisg 7864 qliftfuns 8829 xpf1o 9170 iunfi 9372 iundom2g 10571 lble 12204 rlimcld2 15562 sumeq2ii 15679 summolem3 15700 zsum 15704 fsum 15706 fsumf1o 15709 sumss2 15712 fsumcvg2 15713 fsumadd 15726 isummulc2 15748 fsum2dlem 15756 fsumcom2 15760 fsumshftm 15767 fsum0diag2 15769 fsummulc2 15770 fsum00 15784 fsumabs 15787 fsumrelem 15793 fsumrlim 15797 fsumo1 15798 o1fsum 15799 fsumiun 15807 isumshft 15825 prodeq2ii 15897 prodmolem3 15917 zprod 15921 fprod 15925 fprodf1o 15930 prodss 15931 fprodser 15933 fprodmul 15944 fproddiv 15945 fprodm1s 15954 fprodp1s 15955 fprodabs 15958 fprod2dlem 15964 fprodcom2 15968 fprodefsum 16079 sumeven 16371 sumodd 16372 pcmpt 16868 invfuc 17973 dprd2d2 20008 txcnp 23544 ptcnplem 23545 prdsdsf 24293 prdsxmet 24295 fsumcn 24808 ovolfiniun 25450 ovoliunnul 25456 volfiniun 25496 iunmbl 25502 limciun 25843 dvfsumle 25974 dvfsumleOLD 25975 dvfsumabs 25977 dvfsumlem1 25980 dvfsumlem3 25983 dvfsumlem4 25984 dvfsumrlim 25986 dvfsumrlim2 25987 dvfsum2 25989 itgsubst 26004 fsumvma 27166 dchrisumlema 27441 dchrisumlem2 27443 dchrisumlem3 27444 nosupbnd1 27667 noinfbnd1 27682 chirred 32225 fsumiunle 32613 sigapildsyslem 33813 voliune 33881 volfiniune 33882 ptrest 37125 poimirlem25 37151 poimirlem26 37152 mzpsubst 42199 rabdiophlem2 42253 cvgcaule 44903 etransclem48 45699 sge0iunmpt 45835 2reu8i 46522 |
Copyright terms: Public domain | W3C validator |