| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspc | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| rspc.1 | ⊢ Ⅎ𝑥𝜓 |
| rspc.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rspc | ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥 𝐴 ∈ 𝐵 | |
| 4 | rspc.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 5 | 3, 4 | nfim 1897 | . . . 4 ⊢ Ⅎ𝑥(𝐴 ∈ 𝐵 → 𝜓) |
| 6 | eleq1 2819 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵)) | |
| 7 | rspc.2 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 8 | 6, 7 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ 𝐵 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓))) |
| 9 | 2, 5, 8 | spcgf 3546 | . . 3 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → (𝐴 ∈ 𝐵 → 𝜓))) |
| 10 | 9 | pm2.43a 54 | . 2 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝑥 ∈ 𝐵 → 𝜑) → 𝜓)) |
| 11 | 1, 10 | biimtrid 242 | 1 ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 |
| This theorem is referenced by: rspc2 3586 rspc2vd 3898 disjxiun 5088 pofun 5542 fmptcof 7063 fliftfuns 7248 ofmpteq 7633 tfisg 7784 qliftfuns 8728 xpf1o 9052 iunfi 9227 iundom2g 10431 lble 12074 rlimcld2 15485 sumeq2ii 15600 summolem3 15621 zsum 15625 fsum 15627 fsumf1o 15630 sumss2 15633 fsumcvg2 15634 fsumadd 15647 isummulc2 15669 fsum2dlem 15677 fsumcom2 15681 fsumshftm 15688 fsum0diag2 15690 fsummulc2 15691 fsum00 15705 fsumabs 15708 fsumrelem 15714 fsumrlim 15718 fsumo1 15719 o1fsum 15720 fsumiun 15728 isumshft 15746 prodeq2ii 15818 prodmolem3 15840 zprod 15844 fprod 15848 fprodf1o 15853 prodss 15854 fprodser 15856 fprodmul 15867 fproddiv 15868 fprodm1s 15877 fprodp1s 15878 fprodabs 15881 fprod2dlem 15887 fprodcom2 15891 fprodefsum 16002 sumeven 16298 sumodd 16299 pcmpt 16804 invfuc 17884 dprd2d2 19959 txcnp 23536 ptcnplem 23537 prdsdsf 24283 prdsxmet 24285 fsumcn 24789 ovolfiniun 25430 ovoliunnul 25436 volfiniun 25476 iunmbl 25482 limciun 25823 dvfsumle 25954 dvfsumleOLD 25955 dvfsumabs 25957 dvfsumlem1 25960 dvfsumlem3 25963 dvfsumlem4 25964 dvfsumrlim 25966 dvfsumrlim2 25967 dvfsum2 25969 itgsubst 25984 fsumvma 27152 dchrisumlema 27427 dchrisumlem2 27429 dchrisumlem3 27430 nosupbnd1 27654 noinfbnd1 27669 chirred 32373 fsumiunle 32810 sigapildsyslem 34172 voliune 34240 volfiniune 34241 ptrest 37665 poimirlem25 37691 poimirlem26 37692 mzpsubst 42787 rabdiophlem2 42841 cvgcaule 45535 etransclem48 46326 sge0iunmpt 46462 2reu8i 47150 |
| Copyright terms: Public domain | W3C validator |