MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedv Structured version   Visualization version   GIF version

Theorem rspcedv 3594
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimprd 248 . 2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
41, 3rspcimedv 3592 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061
This theorem is referenced by:  rspcebdv  3595  rspcev  3601  rspcedvd  3603  0csh0  14811  gcdcllem1  16518  nn0gsumfz  19965  pmatcollpw3lem  22721  pmatcollpw3fi1lem2  22725  pm2mpfo  22752  f1otrg  28850  cusgrfilem2  29436  wwlksnredwwlkn  29877  wwlksnextprop  29894  clwwlknun  30093  cusconngr  30172  xrofsup  32744  esum2d  34124  rexzrexnn0  42827  onsucelab  43287  ordnexbtwnsuc  43291  ov2ssiunov2  43724  requad2  47637  lcoel0  48404  lcoss  48412  el0ldep  48442  ldepspr  48449  islindeps2  48459  isldepslvec2  48461  affinecomb1  48682  isisod  48997
  Copyright terms: Public domain W3C validator