Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rspcedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 247 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
4 | 1, 3 | rspcimedv 3552 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rspcebdv 3555 rspcev 3561 rspcedvd 3563 0csh0 14506 gcdcllem1 16206 nn0gsumfz 19585 pmatcollpw3lem 21932 pmatcollpw3fi1lem2 21936 pm2mpfo 21963 f1otrg 27232 cusgrfilem2 27823 wwlksnredwwlkn 28260 wwlksnextprop 28277 clwwlknun 28476 cusconngr 28555 xrofsup 31090 esum2d 32061 rexzrexnn0 40626 ov2ssiunov2 41308 requad2 45075 lcoel0 45769 lcoss 45777 el0ldep 45807 ldepspr 45814 islindeps2 45824 isldepslvec2 45826 affinecomb1 46048 |
Copyright terms: Public domain | W3C validator |