![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspcedv | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rspcedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | biimprd 248 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
4 | 1, 3 | rspcimedv 3626 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 |
This theorem is referenced by: rspcebdv 3629 rspcev 3635 rspcedvd 3637 0csh0 14841 gcdcllem1 16545 nn0gsumfz 20026 pmatcollpw3lem 22810 pmatcollpw3fi1lem2 22814 pm2mpfo 22841 f1otrg 28897 cusgrfilem2 29492 wwlksnredwwlkn 29928 wwlksnextprop 29945 clwwlknun 30144 cusconngr 30223 xrofsup 32774 esum2d 34057 rexzrexnn0 42760 onsucelab 43225 ordnexbtwnsuc 43229 ov2ssiunov2 43662 requad2 47497 lcoel0 48157 lcoss 48165 el0ldep 48195 ldepspr 48202 islindeps2 48212 isldepslvec2 48214 affinecomb1 48436 |
Copyright terms: Public domain | W3C validator |