MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedv Structured version   Visualization version   GIF version

Theorem rspcedv 3578
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimprd 248 . 2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
41, 3rspcimedv 3576 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054
This theorem is referenced by:  rspcebdv  3579  rspcev  3585  rspcedvd  3587  0csh0  14734  gcdcllem1  16445  nn0gsumfz  19890  pmatcollpw3lem  22646  pmatcollpw3fi1lem2  22650  pm2mpfo  22677  f1otrg  28774  cusgrfilem2  29360  wwlksnredwwlkn  29798  wwlksnextprop  29815  clwwlknun  30014  cusconngr  30093  xrofsup  32663  esum2d  34056  rexzrexnn0  42765  onsucelab  43225  ordnexbtwnsuc  43229  ov2ssiunov2  43662  requad2  47597  lcoel0  48390  lcoss  48398  el0ldep  48428  ldepspr  48435  islindeps2  48445  isldepslvec2  48447  affinecomb1  48664  isisod  48989
  Copyright terms: Public domain W3C validator