MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedv Structured version   Visualization version   GIF version

Theorem rspcedv 3628
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimprd 248 . 2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
41, 3rspcimedv 3626 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077
This theorem is referenced by:  rspcebdv  3629  rspcev  3635  rspcedvd  3637  0csh0  14841  gcdcllem1  16545  nn0gsumfz  20026  pmatcollpw3lem  22810  pmatcollpw3fi1lem2  22814  pm2mpfo  22841  f1otrg  28897  cusgrfilem2  29492  wwlksnredwwlkn  29928  wwlksnextprop  29945  clwwlknun  30144  cusconngr  30223  xrofsup  32774  esum2d  34057  rexzrexnn0  42760  onsucelab  43225  ordnexbtwnsuc  43229  ov2ssiunov2  43662  requad2  47497  lcoel0  48157  lcoss  48165  el0ldep  48195  ldepspr  48202  islindeps2  48212  isldepslvec2  48214  affinecomb1  48436
  Copyright terms: Public domain W3C validator