| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcedv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| 4 | 1, 3 | rspcimedv 3568 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3571 rspcev 3577 rspcedvd 3579 0csh0 14699 gcdcllem1 16410 nn0gsumfz 19863 pmatcollpw3lem 22668 pmatcollpw3fi1lem2 22672 pm2mpfo 22699 f1otrg 28816 cusgrfilem2 29402 wwlksnredwwlkn 29840 wwlksnextprop 29857 clwwlknun 30056 cusconngr 30135 xrofsup 32710 esum2d 34060 rexzrexnn0 42777 onsucelab 43236 ordnexbtwnsuc 43240 ov2ssiunov2 43673 requad2 47607 lcoel0 48413 lcoss 48421 el0ldep 48451 ldepspr 48458 islindeps2 48468 isldepslvec2 48470 affinecomb1 48687 isisod 49012 |
| Copyright terms: Public domain | W3C validator |