MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspcedv Structured version   Visualization version   GIF version

Theorem rspcedv 3544
Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rspcdv.1 (𝜑𝐴𝐵)
rspcdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rspcedv (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem rspcedv
StepHypRef Expression
1 rspcdv.1 . 2 (𝜑𝐴𝐵)
2 rspcdv.2 . . 3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
32biimprd 247 . 2 ((𝜑𝑥 = 𝐴) → (𝜒𝜓))
41, 3rspcimedv 3542 1 (𝜑 → (𝜒 → ∃𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069
This theorem is referenced by:  rspcebdv  3545  rspcev  3552  rspcedvd  3555  0csh0  14434  gcdcllem1  16134  nn0gsumfz  19500  pmatcollpw3lem  21840  pmatcollpw3fi1lem2  21844  pm2mpfo  21871  f1otrg  27136  cusgrfilem2  27726  wwlksnredwwlkn  28161  wwlksnextprop  28178  clwwlknun  28377  cusconngr  28456  xrofsup  30992  esum2d  31961  rexzrexnn0  40542  ov2ssiunov2  41197  requad2  44963  lcoel0  45657  lcoss  45665  el0ldep  45695  ldepspr  45702  islindeps2  45712  isldepslvec2  45714  affinecomb1  45936
  Copyright terms: Public domain W3C validator