| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rspcedv | Structured version Visualization version GIF version | ||
| Description: Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| rspcdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcedv | ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 2 | rspcdv.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | biimprd 248 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) |
| 4 | 1, 3 | rspcimedv 3579 | 1 ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3582 rspcev 3588 rspcedvd 3590 0csh0 14758 gcdcllem1 16469 nn0gsumfz 19914 pmatcollpw3lem 22670 pmatcollpw3fi1lem2 22674 pm2mpfo 22701 f1otrg 28798 cusgrfilem2 29384 wwlksnredwwlkn 29825 wwlksnextprop 29842 clwwlknun 30041 cusconngr 30120 xrofsup 32690 esum2d 34083 rexzrexnn0 42792 onsucelab 43252 ordnexbtwnsuc 43256 ov2ssiunov2 43689 requad2 47624 lcoel0 48417 lcoss 48425 el0ldep 48455 ldepspr 48462 islindeps2 48472 isldepslvec2 48474 affinecomb1 48691 isisod 49016 |
| Copyright terms: Public domain | W3C validator |