| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3132 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3579 disjiund 5093 ralxfrd 5358 poxp3 8106 odi 8520 omeulem1 8523 qsss 8726 findcard3 9205 findcard3OLD 9206 ttrclselem2 9655 r1pwss 9713 dfac5lem4 10055 dfac5lem4OLD 10057 climuni 15494 rlimno1 15596 caurcvg2 15620 sscfn1 17755 gsumval2a 18588 gsumval3 19813 opnnei 22983 dislly 23360 lfinpfin 23387 txcmplem1 23504 ufileu 23782 alexsubALT 23914 metustel 24414 metustfbas 24421 i1faddlem 25570 ulmval 26265 brbtwn 28802 vtxduhgr0nedg 29396 wwlksnredwwlkn0 29799 midwwlks2s3 29855 umgr2cycl 35101 iccllysconn 35210 cvmopnlem 35238 cvmlift2lem10 35272 cvmlift3lem8 35286 sdclem2 37709 heibor1lem 37776 elrfi 42655 eldiophb 42718 dnnumch2 43007 inisegn0a 48797 |
| Copyright terms: Public domain | W3C validator |