MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimdvw Structured version   Visualization version   GIF version

Theorem rexlimdvw 3166
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
Hypothesis
Ref Expression
rexlimdvw.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexlimdvw (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdvw
StepHypRef Expression
1 rexlimdvw.1 . . 3 (𝜑 → (𝜓𝜒))
21a1d 25 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 3159 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-rex 3077
This theorem is referenced by:  rspcebdv  3629  disjiund  5157  ralxfrd  5426  poxp3  8191  odi  8635  omeulem1  8638  qsss  8836  findcard3  9346  findcard3OLD  9347  ttrclselem2  9795  r1pwss  9853  dfac5lem4  10195  dfac5lem4OLD  10197  climuni  15598  rlimno1  15702  caurcvg2  15726  sscfn1  17878  gsumval2a  18723  gsumval3  19949  opnnei  23149  dislly  23526  lfinpfin  23553  txcmplem1  23670  ufileu  23948  alexsubALT  24080  metustel  24584  metustfbas  24591  i1faddlem  25747  ulmval  26441  brbtwn  28932  vtxduhgr0nedg  29528  wwlksnredwwlkn0  29929  midwwlks2s3  29985  umgr2cycl  35109  iccllysconn  35218  cvmopnlem  35246  cvmlift2lem10  35280  cvmlift3lem8  35294  sdclem2  37702  heibor1lem  37769  elrfi  42650  eldiophb  42713  dnnumch2  43002
  Copyright terms: Public domain W3C validator