![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3150 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-rex 3068 |
This theorem is referenced by: rspcebdv 3615 disjiund 5138 ralxfrd 5413 poxp3 8173 odi 8615 omeulem1 8618 qsss 8816 findcard3 9315 findcard3OLD 9316 ttrclselem2 9763 r1pwss 9821 dfac5lem4 10163 dfac5lem4OLD 10165 climuni 15584 rlimno1 15686 caurcvg2 15710 sscfn1 17864 gsumval2a 18710 gsumval3 19939 opnnei 23143 dislly 23520 lfinpfin 23547 txcmplem1 23664 ufileu 23942 alexsubALT 24074 metustel 24578 metustfbas 24585 i1faddlem 25741 ulmval 26437 brbtwn 28928 vtxduhgr0nedg 29524 wwlksnredwwlkn0 29925 midwwlks2s3 29981 umgr2cycl 35125 iccllysconn 35234 cvmopnlem 35262 cvmlift2lem10 35296 cvmlift3lem8 35310 sdclem2 37728 heibor1lem 37795 elrfi 42681 eldiophb 42744 dnnumch2 43033 |
Copyright terms: Public domain | W3C validator |