Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3211 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-ral 3068 df-rex 3069 |
This theorem is referenced by: rspcebdv 3545 disjiund 5060 ralxfrd 5326 odi 8372 omeulem1 8375 qsss 8525 findcard3 8987 r1pwss 9473 dfac5lem4 9813 climuni 15189 rlimno1 15293 caurcvg2 15317 sscfn1 17446 gsumval2a 18284 gsumval3 19423 opnnei 22179 dislly 22556 lfinpfin 22583 txcmplem1 22700 ufileu 22978 alexsubALT 23110 metustel 23612 metustfbas 23619 i1faddlem 24762 ulmval 25444 brbtwn 27170 vtxduhgr0nedg 27762 wwlksnredwwlkn0 28162 midwwlks2s3 28218 umgr2cycl 33003 iccllysconn 33112 cvmopnlem 33140 cvmlift2lem10 33174 cvmlift3lem8 33188 ttrclselem2 33712 poxp3 33723 sdclem2 35827 heibor1lem 35894 elrfi 40432 eldiophb 40495 dnnumch2 40786 |
Copyright terms: Public domain | W3C validator |