Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3146 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-rex 3071 |
This theorem is referenced by: rspcebdv 3563 disjiund 5076 ralxfrd 5345 odi 8459 omeulem1 8462 qsss 8616 findcard3 9128 findcard3OLD 9129 ttrclselem2 9561 r1pwss 9619 dfac5lem4 9961 climuni 15337 rlimno1 15441 caurcvg2 15465 sscfn1 17603 gsumval2a 18443 gsumval3 19580 opnnei 22351 dislly 22728 lfinpfin 22755 txcmplem1 22872 ufileu 23150 alexsubALT 23282 metustel 23786 metustfbas 23793 i1faddlem 24937 ulmval 25619 brbtwn 27400 vtxduhgr0nedg 27992 wwlksnredwwlkn0 28393 midwwlks2s3 28449 umgr2cycl 33238 iccllysconn 33347 cvmopnlem 33375 cvmlift2lem10 33409 cvmlift3lem8 33423 poxp3 33922 sdclem2 35977 heibor1lem 36044 elrfi 40737 eldiophb 40800 dnnumch2 41092 |
Copyright terms: Public domain | W3C validator |