![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3159 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rspcebdv 3629 disjiund 5157 ralxfrd 5426 poxp3 8191 odi 8635 omeulem1 8638 qsss 8836 findcard3 9346 findcard3OLD 9347 ttrclselem2 9795 r1pwss 9853 dfac5lem4 10195 dfac5lem4OLD 10197 climuni 15598 rlimno1 15702 caurcvg2 15726 sscfn1 17878 gsumval2a 18723 gsumval3 19949 opnnei 23149 dislly 23526 lfinpfin 23553 txcmplem1 23670 ufileu 23948 alexsubALT 24080 metustel 24584 metustfbas 24591 i1faddlem 25747 ulmval 26441 brbtwn 28932 vtxduhgr0nedg 29528 wwlksnredwwlkn0 29929 midwwlks2s3 29985 umgr2cycl 35109 iccllysconn 35218 cvmopnlem 35246 cvmlift2lem10 35280 cvmlift3lem8 35294 sdclem2 37702 heibor1lem 37769 elrfi 42650 eldiophb 42713 dnnumch2 43002 |
Copyright terms: Public domain | W3C validator |