| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3140 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3062 |
| This theorem is referenced by: rspcebdv 3600 disjiund 5115 ralxfrd 5383 poxp3 8154 odi 8596 omeulem1 8599 qsss 8797 findcard3 9295 findcard3OLD 9296 ttrclselem2 9745 r1pwss 9803 dfac5lem4 10145 dfac5lem4OLD 10147 climuni 15573 rlimno1 15675 caurcvg2 15699 sscfn1 17835 gsumval2a 18668 gsumval3 19893 opnnei 23063 dislly 23440 lfinpfin 23467 txcmplem1 23584 ufileu 23862 alexsubALT 23994 metustel 24494 metustfbas 24501 i1faddlem 25651 ulmval 26346 brbtwn 28883 vtxduhgr0nedg 29477 wwlksnredwwlkn0 29883 midwwlks2s3 29939 umgr2cycl 35168 iccllysconn 35277 cvmopnlem 35305 cvmlift2lem10 35339 cvmlift3lem8 35353 sdclem2 37771 heibor1lem 37838 elrfi 42684 eldiophb 42747 dnnumch2 43036 inisegn0a 48781 |
| Copyright terms: Public domain | W3C validator |