| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3132 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3579 disjiund 5093 ralxfrd 5358 poxp3 8106 odi 8520 omeulem1 8523 qsss 8726 findcard3 9205 findcard3OLD 9206 ttrclselem2 9655 r1pwss 9713 dfac5lem4 10055 dfac5lem4OLD 10057 climuni 15494 rlimno1 15596 caurcvg2 15620 sscfn1 17759 gsumval2a 18594 gsumval3 19821 opnnei 23040 dislly 23417 lfinpfin 23444 txcmplem1 23561 ufileu 23839 alexsubALT 23971 metustel 24471 metustfbas 24478 i1faddlem 25627 ulmval 26322 brbtwn 28879 vtxduhgr0nedg 29473 wwlksnredwwlkn0 29876 midwwlks2s3 29932 umgr2cycl 35121 iccllysconn 35230 cvmopnlem 35258 cvmlift2lem10 35292 cvmlift3lem8 35306 sdclem2 37729 heibor1lem 37796 elrfi 42675 eldiophb 42738 dnnumch2 43027 inisegn0a 48817 |
| Copyright terms: Public domain | W3C validator |