| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3131 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: rspcebdv 3566 disjiund 5080 ralxfrd 5344 poxp3 8080 odi 8494 omeulem1 8497 qsss 8700 findcard3 9167 ttrclselem2 9616 r1pwss 9677 dfac5lem4 10017 dfac5lem4OLD 10019 climuni 15459 rlimno1 15561 caurcvg2 15585 sscfn1 17724 gsumval2a 18593 gsumval3 19819 opnnei 23035 dislly 23412 lfinpfin 23439 txcmplem1 23556 ufileu 23834 alexsubALT 23966 metustel 24465 metustfbas 24472 i1faddlem 25621 ulmval 26316 brbtwn 28877 vtxduhgr0nedg 29471 wwlksnredwwlkn0 29874 midwwlks2s3 29930 umgr2cycl 35185 iccllysconn 35294 cvmopnlem 35322 cvmlift2lem10 35356 cvmlift3lem8 35370 sdclem2 37792 heibor1lem 37859 elrfi 42797 eldiophb 42860 dnnumch2 43148 inisegn0a 48946 |
| Copyright terms: Public domain | W3C validator |