Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3212 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rspcebdv 3555 disjiund 5064 ralxfrd 5331 odi 8410 omeulem1 8413 qsss 8567 findcard3 9057 ttrclselem2 9484 r1pwss 9542 dfac5lem4 9882 climuni 15261 rlimno1 15365 caurcvg2 15389 sscfn1 17529 gsumval2a 18369 gsumval3 19508 opnnei 22271 dislly 22648 lfinpfin 22675 txcmplem1 22792 ufileu 23070 alexsubALT 23202 metustel 23706 metustfbas 23713 i1faddlem 24857 ulmval 25539 brbtwn 27267 vtxduhgr0nedg 27859 wwlksnredwwlkn0 28261 midwwlks2s3 28317 umgr2cycl 33103 iccllysconn 33212 cvmopnlem 33240 cvmlift2lem10 33274 cvmlift3lem8 33288 poxp3 33796 sdclem2 35900 heibor1lem 35967 elrfi 40516 eldiophb 40579 dnnumch2 40870 |
Copyright terms: Public domain | W3C validator |