| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3132 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3582 disjiund 5098 ralxfrd 5363 poxp3 8129 odi 8543 omeulem1 8546 qsss 8749 findcard3 9229 findcard3OLD 9230 ttrclselem2 9679 r1pwss 9737 dfac5lem4 10079 dfac5lem4OLD 10081 climuni 15518 rlimno1 15620 caurcvg2 15644 sscfn1 17779 gsumval2a 18612 gsumval3 19837 opnnei 23007 dislly 23384 lfinpfin 23411 txcmplem1 23528 ufileu 23806 alexsubALT 23938 metustel 24438 metustfbas 24445 i1faddlem 25594 ulmval 26289 brbtwn 28826 vtxduhgr0nedg 29420 wwlksnredwwlkn0 29826 midwwlks2s3 29882 umgr2cycl 35128 iccllysconn 35237 cvmopnlem 35265 cvmlift2lem10 35299 cvmlift3lem8 35313 sdclem2 37736 heibor1lem 37803 elrfi 42682 eldiophb 42745 dnnumch2 43034 inisegn0a 48821 |
| Copyright terms: Public domain | W3C validator |