| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
| Ref | Expression |
|---|---|
| rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| 3 | 2 | rexlimdv 3128 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rspcebdv 3571 disjiund 5083 ralxfrd 5347 poxp3 8083 odi 8497 omeulem1 8500 qsss 8703 findcard3 9172 ttrclselem2 9622 r1pwss 9680 dfac5lem4 10020 dfac5lem4OLD 10022 climuni 15459 rlimno1 15561 caurcvg2 15585 sscfn1 17724 gsumval2a 18559 gsumval3 19786 opnnei 23005 dislly 23382 lfinpfin 23409 txcmplem1 23526 ufileu 23804 alexsubALT 23936 metustel 24436 metustfbas 24443 i1faddlem 25592 ulmval 26287 brbtwn 28844 vtxduhgr0nedg 29438 wwlksnredwwlkn0 29841 midwwlks2s3 29897 umgr2cycl 35124 iccllysconn 35233 cvmopnlem 35261 cvmlift2lem10 35295 cvmlift3lem8 35309 sdclem2 37732 heibor1lem 37799 elrfi 42677 eldiophb 42740 dnnumch2 43028 inisegn0a 48830 |
| Copyright terms: Public domain | W3C validator |