Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimdvw | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvw.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
rexlimdvw | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvw.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | a1d 25 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | rexlimdv 3202 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-ral 3066 df-rex 3067 |
This theorem is referenced by: rspcebdv 3531 disjiund 5043 ralxfrd 5301 odi 8307 omeulem1 8310 qsss 8460 findcard3 8914 r1pwss 9400 dfac5lem4 9740 climuni 15113 rlimno1 15217 caurcvg2 15241 sscfn1 17322 gsumval2a 18157 gsumval3 19292 opnnei 22017 dislly 22394 lfinpfin 22421 txcmplem1 22538 ufileu 22816 alexsubALT 22948 metustel 23448 metustfbas 23455 i1faddlem 24590 ulmval 25272 brbtwn 26990 vtxduhgr0nedg 27580 wwlksnredwwlkn0 27980 midwwlks2s3 28036 umgr2cycl 32816 iccllysconn 32925 cvmopnlem 32953 cvmlift2lem10 32987 cvmlift3lem8 33001 poxp3 33533 sdclem2 35637 heibor1lem 35704 elrfi 40219 eldiophb 40282 dnnumch2 40573 |
Copyright terms: Public domain | W3C validator |