MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgr2wsp2nb Structured version   Visualization version   GIF version

Theorem fusgr2wsp2nb 30320
Description: The set of paths of length 2 with a given vertex in the middle for a finite simple graph is the union of all paths of length 2 from one neighbor to another neighbor of this vertex via this vertex. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgr2wsp2nb ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩})
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑤,𝑎)   𝑉(𝑤)

Proof of Theorem fusgr2wsp2nb
Dummy variables 𝑚 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrhash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fusgreg2wsp.m . . . . . 6 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
31, 2fusgreg2wsplem 30319 . . . . 5 (𝑁𝑉 → (𝑧 ∈ (𝑀𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁)))
43adantl 481 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (𝑀𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁)))
51wspthsnwspthsnon 29903 . . . . . . 7 (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦))
6 fusgrusgr 29306 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
76adantr 480 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph)
8 eqid 2736 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
91, 8usgr2wspthon 29952 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (𝑥𝑉𝑦𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
107, 9sylan 580 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
11102rexbidva 3208 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥𝑉𝑦𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
125, 11bitrid 283 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
1312anbi1d 631 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁)))
14 19.41vv 1950 . . . . . . 7 (∃𝑥𝑦(((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁))
15 velsn 4622 . . . . . . . . . . . 12 (𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)
1615bicomi 224 . . . . . . . . . . 11 (𝑧 = ⟨“𝑥𝑁𝑦”⟩ ↔ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})
1716anbi2i 623 . . . . . . . . . 10 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
1817a1i 11 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
19 simplr 768 . . . . . . . . . . . 12 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → 𝑁𝑉)
20 anass 468 . . . . . . . . . . . . . . 15 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ (𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
21 ancom 460 . . . . . . . . . . . . . . 15 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ (𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
22 an12 645 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))
23 nesym 2989 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ ¬ 𝑦 = 𝑥)
24 prcom 4713 . . . . . . . . . . . . . . . . . . . 20 {𝑚, 𝑦} = {𝑦, 𝑚}
2524eleq1i 2826 . . . . . . . . . . . . . . . . . . 19 ({𝑚, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑚} ∈ (Edg‘𝐺))
2623, 25anbi12ci 629 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)) ↔ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))
2726anbi2i 623 . . . . . . . . . . . . . . . . 17 (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
2822, 27bitri 275 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
2928anbi1i 624 . . . . . . . . . . . . . . 15 (((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
3020, 21, 293bitri 297 . . . . . . . . . . . . . 14 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
31 preq2 4715 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑁 → {𝑥, 𝑚} = {𝑥, 𝑁})
3231eleq1d 2820 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → ({𝑥, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
33 preq2 4715 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑁 → {𝑦, 𝑚} = {𝑦, 𝑁})
3433eleq1d 2820 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑁 → ({𝑦, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
3534anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → (({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
3632, 35anbi12d 632 . . . . . . . . . . . . . . 15 (𝑚 = 𝑁 → (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))))
37 s3eq2 14894 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → ⟨“𝑥𝑚𝑦”⟩ = ⟨“𝑥𝑁𝑦”⟩)
3837eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑚 = 𝑁 → (𝑧 = ⟨“𝑥𝑚𝑦”⟩ ↔ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))
3936, 38anbi12d 632 . . . . . . . . . . . . . 14 (𝑚 = 𝑁 → ((({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
4030, 39bitrid 283 . . . . . . . . . . . . 13 (𝑚 = 𝑁 → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
4140adantl 481 . . . . . . . . . . . 12 ((((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ 𝑚 = 𝑁) → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
42 fveq1 6880 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → (𝑧‘1) = (⟨“𝑥𝑚𝑦”⟩‘1))
43 s3fv1 14916 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ V → (⟨“𝑥𝑚𝑦”⟩‘1) = 𝑚)
4443elv 3469 . . . . . . . . . . . . . . . . . . . 20 (⟨“𝑥𝑚𝑦”⟩‘1) = 𝑚
4542, 44eqtrdi 2787 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → (𝑧‘1) = 𝑚)
4645eqeq1d 2738 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
4746biimpd 229 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
4847adantr 480 . . . . . . . . . . . . . . . 16 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
4948adantr 480 . . . . . . . . . . . . . . 15 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
5049com12 32 . . . . . . . . . . . . . 14 ((𝑧‘1) = 𝑁 → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁))
5150ad2antll 729 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁))
5251imp 406 . . . . . . . . . . . 12 ((((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) → 𝑚 = 𝑁)
5319, 41, 52rspcebdv 3600 . . . . . . . . . . 11 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → (∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
5453pm5.32da 579 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))))
55 an32 646 . . . . . . . . . . 11 ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
5655a1i 11 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))))
57 usgrumgr 29165 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
581, 8umgrpredgv 29124 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → (𝑥𝑉𝑁𝑉))
5958simpld 494 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → 𝑥𝑉)
6059ex 412 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ UMGraph → ({𝑥, 𝑁} ∈ (Edg‘𝐺) → 𝑥𝑉))
611, 8umgrpredgv 29124 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → (𝑦𝑉𝑁𝑉))
6261simpld 494 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → 𝑦𝑉)
6362expcom 413 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦, 𝑁} ∈ (Edg‘𝐺) → (𝐺 ∈ UMGraph → 𝑦𝑉))
6463adantr 480 . . . . . . . . . . . . . . . . . . . 20 (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → (𝐺 ∈ UMGraph → 𝑦𝑉))
6564com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ UMGraph → (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → 𝑦𝑉))
6660, 65anim12d 609 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UMGraph → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
676, 57, 663syl 18 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FinUSGraph → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
6867adantr 480 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
6968com12 32 . . . . . . . . . . . . . . 15 (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥𝑉𝑦𝑉)))
7069adantr 480 . . . . . . . . . . . . . 14 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥𝑉𝑦𝑉)))
7170impcom 407 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → (𝑥𝑉𝑦𝑉))
72 fveq1 6880 . . . . . . . . . . . . . . 15 (𝑧 = ⟨“𝑥𝑁𝑦”⟩ → (𝑧‘1) = (⟨“𝑥𝑁𝑦”⟩‘1))
7372adantl 481 . . . . . . . . . . . . . 14 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → (𝑧‘1) = (⟨“𝑥𝑁𝑦”⟩‘1))
74 s3fv1 14916 . . . . . . . . . . . . . . 15 (𝑁𝑉 → (⟨“𝑥𝑁𝑦”⟩‘1) = 𝑁)
7574adantl 481 . . . . . . . . . . . . . 14 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (⟨“𝑥𝑁𝑦”⟩‘1) = 𝑁)
7673, 75sylan9eqr 2793 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → (𝑧‘1) = 𝑁)
7771, 76jca 511 . . . . . . . . . . . 12 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁))
7877ex 412 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)))
7978pm4.71rd 562 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))))
8054, 56, 793bitr4d 311 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
818nbusgreledg 29337 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
826, 81syl 17 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
8382adantr 480 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
84 eldif 3941 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥}))
858nbusgreledg 29337 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
866, 85syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FinUSGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
8786adantr 480 . . . . . . . . . . . . 13 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
88 velsn 4622 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
8988a1i 11 . . . . . . . . . . . . . 14 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥))
9089notbid 318 . . . . . . . . . . . . 13 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (¬ 𝑦 ∈ {𝑥} ↔ ¬ 𝑦 = 𝑥))
9187, 90anbi12d 632 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
9284, 91bitrid 283 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
9383, 92anbi12d 632 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))))
9493anbi1d 631 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
9518, 80, 943bitr4d 311 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
96952exbidv 1924 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥𝑦(((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
9714, 96bitr3id 285 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
98 r2ex 3182 . . . . . . 7 (∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
9998anbi1i 624 . . . . . 6 ((∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁))
100 r2ex 3182 . . . . . 6 (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
10197, 99, 1003bitr4g 314 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
102 vex 3468 . . . . . . . 8 𝑧 ∈ V
103 eleq1w 2818 . . . . . . . . 9 (𝑝 = 𝑧 → (𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
1041032rexbidv 3210 . . . . . . . 8 (𝑝 = 𝑧 → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
105102, 104elab 3663 . . . . . . 7 (𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})
106105bicomi 224 . . . . . 6 (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}})
107106a1i 11 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
10813, 101, 1073bitrd 305 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
1094, 108bitrd 279 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (𝑀𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
110109eqrdv 2734 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}})
111 dfiunv2 5016 . 2 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩} = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}
112110, 111eqtr4di 2789 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  wne 2933  wrex 3061  {crab 3420  Vcvv 3464  cdif 3928  {csn 4606  {cpr 4608   ciun 4972  cmpt 5206  cfv 6536  (class class class)co 7410  1c1 11135  2c2 12300  ⟨“cs3 14866  Vtxcvtx 28980  Edgcedg 29031  UMGraphcumgr 29065  USGraphcusgr 29133  FinUSGraphcfusgr 29300   NeighbVtx cnbgr 29316   WSPathsN cwwspthsn 29815   WSPathsNOn cwwspthsnon 29816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-ac2 10482  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-ac 10135  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-umgr 29067  df-uspgr 29134  df-usgr 29135  df-fusgr 29301  df-nbgr 29317  df-wlks 29584  df-wlkson 29585  df-trls 29677  df-trlson 29678  df-pths 29701  df-spths 29702  df-pthson 29703  df-spthson 29704  df-wwlks 29817  df-wwlksn 29818  df-wwlksnon 29819  df-wspthsn 29820  df-wspthsnon 29821
This theorem is referenced by:  fusgreghash2wspv  30321
  Copyright terms: Public domain W3C validator