MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fusgr2wsp2nb Structured version   Visualization version   GIF version

Theorem fusgr2wsp2nb 27635
Description: The set of paths of length 2 with a given vertex in the middle for a finite simple graph is the union of all paths of length 2 from one neighbor to another neighbor of this vertex via this vertex. (Contributed by Alexander van der Vekens, 9-Mar-2018.) (Revised by AV, 17-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
fusgr2wsp2nb ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩})
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑤,𝐺   𝑁,𝑎,𝑤   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑤,𝑎)   𝑉(𝑤)

Proof of Theorem fusgr2wsp2nb
Dummy variables 𝑚 𝑧 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgrhash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fusgreg2wsp.m . . . . . 6 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
31, 2fusgreg2wsplem 27634 . . . . 5 (𝑁𝑉 → (𝑧 ∈ (𝑀𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁)))
43adantl 473 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (𝑀𝑁) ↔ (𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁)))
51wspthsnwspthsnon 27155 . . . . . . 7 (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦))
6 fusgrusgr 26507 . . . . . . . . . 10 (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph)
76adantr 472 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → 𝐺 ∈ USGraph)
8 eqid 2765 . . . . . . . . . 10 (Edg‘𝐺) = (Edg‘𝐺)
91, 8usgr2wspthon 27208 . . . . . . . . 9 ((𝐺 ∈ USGraph ∧ (𝑥𝑉𝑦𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
107, 9sylan 575 . . . . . . . 8 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
11102rexbidva 3203 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥𝑉𝑦𝑉 𝑧 ∈ (𝑥(2 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
125, 11syl5bb 274 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (2 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
1312anbi1d 623 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁)))
14 19.41vv 2045 . . . . . . 7 (∃𝑥𝑦(((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁))
15 velsn 4352 . . . . . . . . . . . 12 (𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)
1615bicomi 215 . . . . . . . . . . 11 (𝑧 = ⟨“𝑥𝑁𝑦”⟩ ↔ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})
1716anbi2i 616 . . . . . . . . . 10 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
1817a1i 11 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
19 simplr 785 . . . . . . . . . . . 12 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → 𝑁𝑉)
20 anass 460 . . . . . . . . . . . . . . 15 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ (𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
21 ancom 452 . . . . . . . . . . . . . . 15 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ (𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
22 an12 635 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))
23 nesym 2993 . . . . . . . . . . . . . . . . . . 19 (𝑥𝑦 ↔ ¬ 𝑦 = 𝑥)
24 prcom 4424 . . . . . . . . . . . . . . . . . . . 20 {𝑚, 𝑦} = {𝑦, 𝑚}
2524eleq1i 2835 . . . . . . . . . . . . . . . . . . 19 ({𝑚, 𝑦} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑚} ∈ (Edg‘𝐺))
2623, 25anbi12ci 621 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)) ↔ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))
2726anbi2i 616 . . . . . . . . . . . . . . . . 17 (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ (𝑥𝑦 ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
2822, 27bitri 266 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
2928anbi1i 617 . . . . . . . . . . . . . . 15 (((𝑥𝑦 ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
3020, 21, 293bitri 288 . . . . . . . . . . . . . 14 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩))
31 preq2 4426 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑁 → {𝑥, 𝑚} = {𝑥, 𝑁})
3231eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → ({𝑥, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
33 preq2 4426 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑁 → {𝑦, 𝑚} = {𝑦, 𝑁})
3433eleq1d 2829 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑁 → ({𝑦, 𝑚} ∈ (Edg‘𝐺) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
3534anbi1d 623 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → (({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
3632, 35anbi12d 624 . . . . . . . . . . . . . . 15 (𝑚 = 𝑁 → (({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))))
37 s3eq2 13913 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑁 → ⟨“𝑥𝑚𝑦”⟩ = ⟨“𝑥𝑁𝑦”⟩)
3837eqeq2d 2775 . . . . . . . . . . . . . . 15 (𝑚 = 𝑁 → (𝑧 = ⟨“𝑥𝑚𝑦”⟩ ↔ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))
3936, 38anbi12d 624 . . . . . . . . . . . . . 14 (𝑚 = 𝑁 → ((({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑚} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑚𝑦”⟩) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
4030, 39syl5bb 274 . . . . . . . . . . . . 13 (𝑚 = 𝑁 → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
4140adantl 473 . . . . . . . . . . . 12 ((((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ 𝑚 = 𝑁) → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
42 fveq1 6378 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → (𝑧‘1) = (⟨“𝑥𝑚𝑦”⟩‘1))
43 vex 3353 . . . . . . . . . . . . . . . . . . . . 21 𝑚 ∈ V
44 s3fv1 13935 . . . . . . . . . . . . . . . . . . . . 21 (𝑚 ∈ V → (⟨“𝑥𝑚𝑦”⟩‘1) = 𝑚)
4543, 44ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (⟨“𝑥𝑚𝑦”⟩‘1) = 𝑚
4642, 45syl6eq 2815 . . . . . . . . . . . . . . . . . . 19 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → (𝑧‘1) = 𝑚)
4746eqeq1d 2767 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
4847biimpd 220 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨“𝑥𝑚𝑦”⟩ → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
4948adantr 472 . . . . . . . . . . . . . . . 16 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
5049adantr 472 . . . . . . . . . . . . . . 15 (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → ((𝑧‘1) = 𝑁𝑚 = 𝑁))
5150com12 32 . . . . . . . . . . . . . 14 ((𝑧‘1) = 𝑁 → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁))
5251ad2antll 720 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → (((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) → 𝑚 = 𝑁))
5352imp 395 . . . . . . . . . . . 12 ((((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) ∧ ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) → 𝑚 = 𝑁)
5419, 41, 53rspcebdv 3467 . . . . . . . . . . 11 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)) → (∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
5554pm5.32da 574 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))))
56 an32 636 . . . . . . . . . . 11 ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
5756a1i 11 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))))))
58 usgrumgr 26366 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
591, 8umgrpredgv 26327 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → (𝑥𝑉𝑁𝑉))
6059simpld 488 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ UMGraph ∧ {𝑥, 𝑁} ∈ (Edg‘𝐺)) → 𝑥𝑉)
6160ex 401 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ UMGraph → ({𝑥, 𝑁} ∈ (Edg‘𝐺) → 𝑥𝑉))
621, 8umgrpredgv 26327 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → (𝑦𝑉𝑁𝑉))
6362simpld 488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐺 ∈ UMGraph ∧ {𝑦, 𝑁} ∈ (Edg‘𝐺)) → 𝑦𝑉)
6463expcom 402 . . . . . . . . . . . . . . . . . . . . 21 ({𝑦, 𝑁} ∈ (Edg‘𝐺) → (𝐺 ∈ UMGraph → 𝑦𝑉))
6564adantr 472 . . . . . . . . . . . . . . . . . . . 20 (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → (𝐺 ∈ UMGraph → 𝑦𝑉))
6665com12 32 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ UMGraph → (({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥) → 𝑦𝑉))
6761, 66anim12d 602 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ UMGraph → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
686, 58, 673syl 18 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ FinUSGraph → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
6968adantr 472 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → (𝑥𝑉𝑦𝑉)))
7069com12 32 . . . . . . . . . . . . . . 15 (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) → ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥𝑉𝑦𝑉)))
7170adantr 472 . . . . . . . . . . . . . 14 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥𝑉𝑦𝑉)))
7271impcom 396 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → (𝑥𝑉𝑦𝑉))
73 fveq1 6378 . . . . . . . . . . . . . . 15 (𝑧 = ⟨“𝑥𝑁𝑦”⟩ → (𝑧‘1) = (⟨“𝑥𝑁𝑦”⟩‘1))
7473adantl 473 . . . . . . . . . . . . . 14 ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → (𝑧‘1) = (⟨“𝑥𝑁𝑦”⟩‘1))
75 s3fv1 13935 . . . . . . . . . . . . . . 15 (𝑁𝑉 → (⟨“𝑥𝑁𝑦”⟩‘1) = 𝑁)
7675adantl 473 . . . . . . . . . . . . . 14 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (⟨“𝑥𝑁𝑦”⟩‘1) = 𝑁)
7774, 76sylan9eqr 2821 . . . . . . . . . . . . 13 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → (𝑧‘1) = 𝑁)
7872, 77jca 507 . . . . . . . . . . . 12 (((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)) → ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁))
7978ex 401 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) → ((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁)))
8079pm4.71rd 558 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩) ↔ (((𝑥𝑉𝑦𝑉) ∧ (𝑧‘1) = 𝑁) ∧ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩))))
8155, 57, 803bitr4d 302 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 = ⟨“𝑥𝑁𝑦”⟩)))
828nbusgreledg 26542 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
836, 82syl 17 . . . . . . . . . . . 12 (𝐺 ∈ FinUSGraph → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
8483adantr 472 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑥 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑥, 𝑁} ∈ (Edg‘𝐺)))
85 eldif 3744 . . . . . . . . . . . 12 (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥}))
868nbusgreledg 26542 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
876, 86syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FinUSGraph → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
8887adantr 472 . . . . . . . . . . . . 13 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ (𝐺 NeighbVtx 𝑁) ↔ {𝑦, 𝑁} ∈ (Edg‘𝐺)))
89 velsn 4352 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥)
9089a1i 11 . . . . . . . . . . . . . 14 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ {𝑥} ↔ 𝑦 = 𝑥))
9190notbid 309 . . . . . . . . . . . . 13 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (¬ 𝑦 ∈ {𝑥} ↔ ¬ 𝑦 = 𝑥))
9288, 91anbi12d 624 . . . . . . . . . . . 12 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑦 ∈ (𝐺 NeighbVtx 𝑁) ∧ ¬ 𝑦 ∈ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
9385, 92syl5bb 274 . . . . . . . . . . 11 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}) ↔ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)))
9484, 93anbi12d 624 . . . . . . . . . 10 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ↔ ({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥))))
9594anbi1d 623 . . . . . . . . 9 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}) ↔ (({𝑥, 𝑁} ∈ (Edg‘𝐺) ∧ ({𝑦, 𝑁} ∈ (Edg‘𝐺) ∧ ¬ 𝑦 = 𝑥)) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
9618, 81, 953bitr4d 302 . . . . . . . 8 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
97962exbidv 2019 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥𝑦(((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
9814, 97syl5bbr 276 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})))
99 r2ex 3208 . . . . . . 7 (∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ↔ ∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))))
10099anbi1i 617 . . . . . 6 ((∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ (∃𝑥𝑦((𝑥𝑉𝑦𝑉) ∧ ∃𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺)))) ∧ (𝑧‘1) = 𝑁))
101 r2ex 3208 . . . . . 6 (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ ∃𝑥𝑦((𝑥 ∈ (𝐺 NeighbVtx 𝑁) ∧ 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})) ∧ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
10298, 100, 1013bitr4g 305 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((∃𝑥𝑉𝑦𝑉𝑚𝑉 ((𝑧 = ⟨“𝑥𝑚𝑦”⟩ ∧ 𝑥𝑦) ∧ ({𝑥, 𝑚} ∈ (Edg‘𝐺) ∧ {𝑚, 𝑦} ∈ (Edg‘𝐺))) ∧ (𝑧‘1) = 𝑁) ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
103 vex 3353 . . . . . . . 8 𝑧 ∈ V
104 eleq1w 2827 . . . . . . . . 9 (𝑝 = 𝑧 → (𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
1051042rexbidv 3204 . . . . . . . 8 (𝑝 = 𝑧 → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩}))
106103, 105elab 3507 . . . . . . 7 (𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}} ↔ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩})
107106bicomi 215 . . . . . 6 (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}})
108107a1i 11 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑧 ∈ {⟨“𝑥𝑁𝑦”⟩} ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
10913, 102, 1083bitrd 296 . . . 4 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → ((𝑧 ∈ (2 WSPathsN 𝐺) ∧ (𝑧‘1) = 𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
1104, 109bitrd 270 . . 3 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑧 ∈ (𝑀𝑁) ↔ 𝑧 ∈ {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}))
111110eqrdv 2763 . 2 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}})
112 dfiunv2 4714 . 2 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩} = {𝑝 ∣ ∃𝑥 ∈ (𝐺 NeighbVtx 𝑁)∃𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥})𝑝 ∈ {⟨“𝑥𝑁𝑦”⟩}}
113111, 112syl6eqr 2817 1 ((𝐺 ∈ FinUSGraph ∧ 𝑁𝑉) → (𝑀𝑁) = 𝑥 ∈ (𝐺 NeighbVtx 𝑁) 𝑦 ∈ ((𝐺 NeighbVtx 𝑁) ∖ {𝑥}){⟨“𝑥𝑁𝑦”⟩})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wne 2937  wrex 3056  {crab 3059  Vcvv 3350  cdif 3731  {csn 4336  {cpr 4338   ciun 4678  cmpt 4890  cfv 6070  (class class class)co 6846  1c1 10194  2c2 11331  ⟨“cs3 13885  Vtxcvtx 26179  Edgcedg 26230  UMGraphcumgr 26267  USGraphcusgr 26336  FinUSGraphcfusgr 26501   NeighbVtx cnbgr 26517   WSPathsN cwwspthsn 27031   WSPathsNOn cwwspthsnon 27032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-ac2 9542  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-card 9020  df-ac 9194  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-nn 11279  df-2 11339  df-3 11340  df-n0 11543  df-xnn0 11615  df-z 11629  df-uz 11892  df-fz 12539  df-fzo 12679  df-hash 13327  df-word 13492  df-concat 13548  df-s1 13573  df-s2 13891  df-s3 13892  df-edg 26231  df-uhgr 26244  df-upgr 26268  df-umgr 26269  df-uspgr 26337  df-usgr 26338  df-fusgr 26502  df-nbgr 26518  df-wlks 26800  df-wlkson 26801  df-trls 26897  df-trlson 26898  df-pths 26922  df-spths 26923  df-pthson 26924  df-spthson 26925  df-wwlks 27033  df-wwlksn 27034  df-wwlksnon 27035  df-wspthsn 27036  df-wspthsnon 27037
This theorem is referenced by:  fusgreghash2wspv  27636
  Copyright terms: Public domain W3C validator