![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcef | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rspcef.1 | ⊢ Ⅎ𝑥𝜓 |
rspcef.2 | ⊢ Ⅎ𝑥𝐴 |
rspcef.3 | ⊢ Ⅎ𝑥𝐵 |
rspcef.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcef | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcef.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcef.2 | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | rspcef.3 | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | rspcef.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspcegf 44913 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rex 3077 |
This theorem is referenced by: iinssdf 45031 rspced 45063 opnvonmbllem1 46543 smfresal 46699 smfmullem2 46703 |
Copyright terms: Public domain | W3C validator |