Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspcef Structured version   Visualization version   GIF version

Theorem rspcef 42509
Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
rspcef.1 𝑥𝜓
rspcef.2 𝑥𝐴
rspcef.3 𝑥𝐵
rspcef.4 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rspcef ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)

Proof of Theorem rspcef
StepHypRef Expression
1 rspcef.1 . 2 𝑥𝜓
2 rspcef.2 . 2 𝑥𝐴
3 rspcef.3 . 2 𝑥𝐵
4 rspcef.4 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
51, 2, 3, 4rspcegf 42455 1 ((𝐴𝐵𝜓) → ∃𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rex 3069  df-v 3424
This theorem is referenced by:  iinssdf  42577  opnvonmbllem1  44060  smfresal  44209  smfmullem2  44213
  Copyright terms: Public domain W3C validator