Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcef | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rspcef.1 | ⊢ Ⅎ𝑥𝜓 |
rspcef.2 | ⊢ Ⅎ𝑥𝐴 |
rspcef.3 | ⊢ Ⅎ𝑥𝐵 |
rspcef.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcef | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcef.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcef.2 | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | rspcef.3 | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | rspcef.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspcegf 42566 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rex 3070 df-v 3434 |
This theorem is referenced by: iinssdf 42688 opnvonmbllem1 44170 smfresal 44322 smfmullem2 44326 |
Copyright terms: Public domain | W3C validator |