![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcef | Structured version Visualization version GIF version |
Description: Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
Ref | Expression |
---|---|
rspcef.1 | ⊢ Ⅎ𝑥𝜓 |
rspcef.2 | ⊢ Ⅎ𝑥𝐴 |
rspcef.3 | ⊢ Ⅎ𝑥𝐵 |
rspcef.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rspcef | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspcef.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | rspcef.2 | . 2 ⊢ Ⅎ𝑥𝐴 | |
3 | rspcef.3 | . 2 ⊢ Ⅎ𝑥𝐵 | |
4 | rspcef.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 1, 2, 3, 4 | rspcegf 44170 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-rex 3070 df-v 3475 |
This theorem is referenced by: iinssdf 44290 rspced 44324 opnvonmbllem1 45807 smfresal 45963 smfmullem2 45967 |
Copyright terms: Public domain | W3C validator |