![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > feq1dd | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
feq1dd.eq | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq1dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feq1dd | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feq1dd.eq | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | feq1d 6708 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
4 | 1, 3 | mpbid 231 | 1 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ⟶wf 6545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5150 df-opab 5212 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-fun 6551 df-fn 6552 df-f 6553 |
This theorem is referenced by: cncficcgt0 45414 itgsubsticclem 45501 itgsbtaddcnst 45508 fourierdlem103 45735 fourierdlem104 45736 fourierdlem113 45745 ismeannd 45993 hoidmv1le 46120 |
Copyright terms: Public domain | W3C validator |