MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq1dd Structured version   Visualization version   GIF version

Theorem feq1dd 6729
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
feq1dd.eq (𝜑𝐹 = 𝐺)
feq1dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq1dd (𝜑𝐺:𝐴𝐵)

Proof of Theorem feq1dd
StepHypRef Expression
1 feq1dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq1dd.eq . . 3 (𝜑𝐹 = 𝐺)
32feq1d 6728 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
41, 3mpbid 232 1 (𝜑𝐺:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wf 6565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-fun 6571  df-fn 6572  df-f 6573
This theorem is referenced by:  elrgspnlem4  33267  cncficcgt0  45872  itgsubsticclem  45959  itgsbtaddcnst  45966  fourierdlem103  46193  fourierdlem104  46194  fourierdlem113  46203  ismeannd  46451  hoidmv1le  46578
  Copyright terms: Public domain W3C validator