![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > feq1dd | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
feq1dd.eq | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq1dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feq1dd | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feq1dd.eq | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | feq1d 6734 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ⟶wf 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-fun 6577 df-fn 6578 df-f 6579 |
This theorem is referenced by: cncficcgt0 45811 itgsubsticclem 45898 itgsbtaddcnst 45905 fourierdlem103 46132 fourierdlem104 46133 fourierdlem113 46142 ismeannd 46390 hoidmv1le 46517 |
Copyright terms: Public domain | W3C validator |