MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq1dd Structured version   Visualization version   GIF version

Theorem feq1dd 6701
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
feq1dd.eq (𝜑𝐹 = 𝐺)
feq1dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq1dd (𝜑𝐺:𝐴𝐵)

Proof of Theorem feq1dd
StepHypRef Expression
1 feq1dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq1dd.eq . . 3 (𝜑𝐹 = 𝐺)
32feq1d 6700 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
41, 3mpbid 232 1 (𝜑𝐺:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-fun 6543  df-fn 6544  df-f 6545
This theorem is referenced by:  elrgspnlem4  33188  cncficcgt0  45860  itgsubsticclem  45947  itgsbtaddcnst  45954  fourierdlem103  46181  fourierdlem104  46182  fourierdlem113  46191  ismeannd  46439  hoidmv1le  46566
  Copyright terms: Public domain W3C validator