MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq1dd Structured version   Visualization version   GIF version

Theorem feq1dd 6671
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
feq1dd.eq (𝜑𝐹 = 𝐺)
feq1dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq1dd (𝜑𝐺:𝐴𝐵)

Proof of Theorem feq1dd
StepHypRef Expression
1 feq1dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq1dd.eq . . 3 (𝜑𝐹 = 𝐺)
32feq1d 6670 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
41, 3mpbid 232 1 (𝜑𝐺:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wf 6507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-fun 6513  df-fn 6514  df-f 6515
This theorem is referenced by:  elrgspnlem4  33196  cncficcgt0  45886  itgsubsticclem  45973  itgsbtaddcnst  45980  fourierdlem103  46207  fourierdlem104  46208  fourierdlem113  46217  ismeannd  46465  hoidmv1le  46592  oppfdiag1  49403
  Copyright terms: Public domain W3C validator