MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq1dd Structured version   Visualization version   GIF version

Theorem feq1dd 6642
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
feq1dd.eq (𝜑𝐹 = 𝐺)
feq1dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq1dd (𝜑𝐺:𝐴𝐵)

Proof of Theorem feq1dd
StepHypRef Expression
1 feq1dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq1dd.eq . . 3 (𝜑𝐹 = 𝐺)
32feq1d 6641 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
41, 3mpbid 232 1 (𝜑𝐺:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-fun 6491  df-fn 6492  df-f 6493
This theorem is referenced by:  elrgspnlem4  33255  esplympl  33653  esplymhp  33654  esplyfv  33656  esplyfval3  33658  cncficcgt0  46048  itgsubsticclem  46135  itgsbtaddcnst  46142  fourierdlem103  46369  fourierdlem104  46370  fourierdlem113  46379  ismeannd  46627  hoidmv1le  46754  oppfdiag1  49575
  Copyright terms: Public domain W3C validator