![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > feq1dd | Structured version Visualization version GIF version |
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
feq1dd.eq | ⊢ (𝜑 → 𝐹 = 𝐺) |
feq1dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
feq1dd | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq1dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
2 | feq1dd.eq | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
3 | 2 | feq1d 6728 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ⟶wf 6565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-fun 6571 df-fn 6572 df-f 6573 |
This theorem is referenced by: elrgspnlem4 33267 cncficcgt0 45872 itgsubsticclem 45959 itgsbtaddcnst 45966 fourierdlem103 46193 fourierdlem104 46194 fourierdlem113 46203 ismeannd 46451 hoidmv1le 46578 |
Copyright terms: Public domain | W3C validator |