| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1dd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| feq1dd.eq | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq1dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feq1dd | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feq1dd.eq | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 3 | 2 | feq1d 6641 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-fun 6491 df-fn 6492 df-f 6493 |
| This theorem is referenced by: elrgspnlem4 33255 esplympl 33653 esplymhp 33654 esplyfv 33656 esplyfval3 33658 cncficcgt0 46048 itgsubsticclem 46135 itgsbtaddcnst 46142 fourierdlem103 46369 fourierdlem104 46370 fourierdlem113 46379 ismeannd 46627 hoidmv1le 46754 oppfdiag1 49575 |
| Copyright terms: Public domain | W3C validator |