Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  feq1dd Structured version   Visualization version   GIF version

Theorem feq1dd 44679
Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
feq1dd.eq (𝜑𝐹 = 𝐺)
feq1dd.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
feq1dd (𝜑𝐺:𝐴𝐵)

Proof of Theorem feq1dd
StepHypRef Expression
1 feq1dd.f . 2 (𝜑𝐹:𝐴𝐵)
2 feq1dd.eq . . 3 (𝜑𝐹 = 𝐺)
32feq1d 6708 . 2 (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
41, 3mpbid 231 1 (𝜑𝐺:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wf 6545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-fun 6551  df-fn 6552  df-f 6553
This theorem is referenced by:  cncficcgt0  45414  itgsubsticclem  45501  itgsbtaddcnst  45508  fourierdlem103  45735  fourierdlem104  45736  fourierdlem113  45745  ismeannd  45993  hoidmv1le  46120
  Copyright terms: Public domain W3C validator