| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > feq1dd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| feq1dd.eq | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq1dd.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| feq1dd | ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq1dd.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 2 | feq1dd.eq | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 3 | 2 | feq1d 6700 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐵 ↔ 𝐺:𝐴⟶𝐵)) |
| 4 | 1, 3 | mpbid 232 | 1 ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ⟶wf 6537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6543 df-fn 6544 df-f 6545 |
| This theorem is referenced by: elrgspnlem4 33188 cncficcgt0 45860 itgsubsticclem 45947 itgsbtaddcnst 45954 fourierdlem103 46181 fourierdlem104 46182 fourierdlem113 46191 ismeannd 46439 hoidmv1le 46566 |
| Copyright terms: Public domain | W3C validator |