![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb8euv | Structured version Visualization version GIF version |
Description: Variable substitution in unique existential quantifier. Version of sb8eu 2603 requiring more disjoint variables, but fewer axioms. (Contributed by NM, 7-Aug-1994.) (Revised by Wolf Lammen, 7-Feb-2023.) |
Ref | Expression |
---|---|
sb8euv.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8euv | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8euv.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfsbv 2334 | . 2 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
3 | 2 | sb8eulem 2601 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 Ⅎwnf 1781 [wsb 2064 ∃!weu 2571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 |
This theorem is referenced by: eu1 2613 cbvreuwOLD 3423 |
Copyright terms: Public domain | W3C validator |