MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8euv Structured version   Visualization version   GIF version

Theorem sb8euv 2687
Description: Variable substitution in unique existential quantifier. Version of sb8eu 2688 requiring more disjoint variables, but fewer axioms. (Contributed by Wolf Lammen, 7-Feb-2023.)
Hypothesis
Ref Expression
sb8euv.nf 𝑦𝜑
Assertion
Ref Expression
sb8euv (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8euv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sb8euv.nf . . 3 𝑦𝜑
21nfsbv 2362 . 2 𝑦[𝑤 / 𝑥]𝜑
3 sbequvv 2345 . 2 (𝑤 = 𝑦 → ([𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
42, 3sb8eulem 2686 1 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 198  wnf 1882  [wsb 2067  ∃!weu 2639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-10 2192  ax-11 2207  ax-12 2220
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640
This theorem is referenced by:  eu1  2695
  Copyright terms: Public domain W3C validator