Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8euv | Structured version Visualization version GIF version |
Description: Variable substitution in unique existential quantifier. Version of sb8eu 2600 requiring more disjoint variables, but fewer axioms. (Contributed by NM, 7-Aug-1994.) (Revised by Wolf Lammen, 7-Feb-2023.) |
Ref | Expression |
---|---|
sb8euv.nf | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8euv | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8euv.nf | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfsbv 2328 | . 2 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
3 | 2 | sb8eulem 2598 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1787 [wsb 2068 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-11 2156 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 |
This theorem is referenced by: cbvmowOLD 2604 cbveuwOLD 2608 eu1 2612 cbvreuw 3365 |
Copyright terms: Public domain | W3C validator |