MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sb8euv Structured version   Visualization version   GIF version

Theorem sb8euv 2599
Description: Variable substitution in unique existential quantifier. Version of sb8eu 2600 requiring more disjoint variables, but fewer axioms. (Contributed by NM, 7-Aug-1994.) (Revised by Wolf Lammen, 7-Feb-2023.)
Hypothesis
Ref Expression
sb8euv.nf 𝑦𝜑
Assertion
Ref Expression
sb8euv (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb8euv
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 sb8euv.nf . . 3 𝑦𝜑
21nfsbv 2324 . 2 𝑦[𝑤 / 𝑥]𝜑
32sb8eulem 2598 1 (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wnf 1786  [wsb 2067  ∃!weu 2568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569
This theorem is referenced by:  cbvmowOLD  2604  cbveuwOLD  2608  eu1  2612  cbvreuwOLD  3377
  Copyright terms: Public domain W3C validator