MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuwOLD Structured version   Visualization version   GIF version

Theorem cbvreuwOLD 3415
Description: Obsolete version of cbvreuw 3410 as of 10-Dec-2024. (Contributed by Mario Carneiro, 15-Oct-2016.) (Revised by GG, 10-Jan-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
cbvreuwOLD.1 𝑦𝜑
cbvreuwOLD.2 𝑥𝜓
cbvreuwOLD.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuwOLD (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbvreuwOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑧(𝑥𝐴𝜑)
21sb8euv 2599 . . 3 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑧[𝑧 / 𝑥](𝑥𝐴𝜑))
3 sban 2080 . . . 4 ([𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
43eubii 2585 . . 3 (∃!𝑧[𝑧 / 𝑥](𝑥𝐴𝜑) ↔ ∃!𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑))
5 clelsb1 2868 . . . . . 6 ([𝑧 / 𝑥]𝑥𝐴𝑧𝐴)
65anbi1i 624 . . . . 5 (([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑))
76eubii 2585 . . . 4 (∃!𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑))
8 nfv 1914 . . . . . 6 𝑦 𝑧𝐴
9 cbvreuwOLD.1 . . . . . . 7 𝑦𝜑
109nfsbv 2330 . . . . . 6 𝑦[𝑧 / 𝑥]𝜑
118, 10nfan 1899 . . . . 5 𝑦(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑)
12 nfv 1914 . . . . 5 𝑧(𝑦𝐴𝜓)
13 eleq1w 2824 . . . . . 6 (𝑧 = 𝑦 → (𝑧𝐴𝑦𝐴))
14 sbequ 2083 . . . . . . 7 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑))
15 cbvreuwOLD.2 . . . . . . . 8 𝑥𝜓
16 cbvreuwOLD.3 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜓))
1715, 16sbiev 2314 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜓)
1814, 17bitrdi 287 . . . . . 6 (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑𝜓))
1913, 18anbi12d 632 . . . . 5 (𝑧 = 𝑦 → ((𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦𝐴𝜓)))
2011, 12, 19cbveuw 2606 . . . 4 (∃!𝑧(𝑧𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦𝐴𝜓))
217, 20bitri 275 . . 3 (∃!𝑧([𝑧 / 𝑥]𝑥𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦𝐴𝜓))
222, 4, 213bitri 297 . 2 (∃!𝑥(𝑥𝐴𝜑) ↔ ∃!𝑦(𝑦𝐴𝜓))
23 df-reu 3381 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
24 df-reu 3381 . 2 (∃!𝑦𝐴 𝜓 ↔ ∃!𝑦(𝑦𝐴𝜓))
2522, 23, 243bitr4i 303 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1783  [wsb 2064  wcel 2108  ∃!weu 2568  ∃!wreu 3378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clel 2816  df-reu 3381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator