Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8eu | Structured version Visualization version GIF version |
Description: Variable substitution in unique existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. For a version requiring more disjoint variables, but fewer axioms, see sb8euv 2599. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb8eu.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8eu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8eu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfsb 2527 | . 2 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
3 | 2 | sb8eulem 2598 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1786 [wsb 2067 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 |
This theorem is referenced by: sb8mo 2601 cbveu 2609 cbvreu 3381 |
Copyright terms: Public domain | W3C validator |