Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sb8eu | Structured version Visualization version GIF version |
Description: Variable substitution in unique existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 2374. For a version requiring more disjoint variables, but fewer axioms, see sb8euv 2601. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Aug-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sb8eu.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
sb8eu | ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb8eu.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | nfsb 2529 | . 2 ⊢ Ⅎ𝑦[𝑤 / 𝑥]𝜑 |
3 | 2 | sb8eulem 2600 | 1 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 Ⅎwnf 1790 [wsb 2071 ∃!weu 2570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-10 2141 ax-11 2158 ax-12 2175 ax-13 2374 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 |
This theorem is referenced by: sb8mo 2603 cbveu 2611 cbvreu 3379 |
Copyright terms: Public domain | W3C validator |