Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sdclem1 Structured version   Visualization version   GIF version

Theorem sdclem1 36202
Description: Lemma for sdc 36203. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
sdc.1 𝑍 = (ℤ𝑀)
sdc.2 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
sdc.3 (𝑛 = 𝑀 → (𝜓𝜏))
sdc.4 (𝑛 = 𝑘 → (𝜓𝜃))
sdc.5 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
sdc.6 (𝜑𝐴𝑉)
sdc.7 (𝜑𝑀 ∈ ℤ)
sdc.8 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
sdc.9 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
sdc.10 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
sdc.11 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
Assertion
Ref Expression
sdclem1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Distinct variable groups:   𝑓,𝑔,,𝑘,𝑛,𝑤,𝑥,𝐴   ,𝐽,𝑘,𝑤,𝑥   𝑓,𝑀,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜒,𝑔   𝑛,𝐹,𝑤,𝑥   𝜓,𝑓,,𝑘,𝑥   𝜎,𝑓,𝑔,𝑛,𝑥   𝜑,𝑛,𝑤,𝑥   𝜃,𝑛,𝑤,𝑥   ,𝑉   𝜏,,𝑘,𝑛,𝑤,𝑥   𝑓,𝑍,𝑔,,𝑘,𝑛,𝑤,𝑥   𝜑,𝑔,,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝜓(𝑤,𝑔,𝑛)   𝜒(𝑥,𝑤,𝑓,,𝑘,𝑛)   𝜃(𝑓,𝑔,,𝑘)   𝜏(𝑓,𝑔)   𝜎(𝑤,,𝑘)   𝐹(𝑓,𝑔,,𝑘)   𝐽(𝑓,𝑔,𝑛)   𝑉(𝑥,𝑤,𝑓,𝑔,𝑘,𝑛)

Proof of Theorem sdclem1
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdc.8 . 2 (𝜑 → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
2 sdc.10 . . . . . 6 𝐽 = {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)}
3 sdc.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
43fvexi 6856 . . . . . . 7 𝑍 ∈ V
5 simpl 483 . . . . . . . . . . 11 ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) → 𝑔:(𝑀...𝑛)⟶𝐴)
6 sdc.6 . . . . . . . . . . . 12 (𝜑𝐴𝑉)
7 ovex 7390 . . . . . . . . . . . 12 (𝑀...𝑛) ∈ V
8 elmapg 8778 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑀...𝑛) ∈ V) → (𝑔 ∈ (𝐴m (𝑀...𝑛)) ↔ 𝑔:(𝑀...𝑛)⟶𝐴))
96, 7, 8sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑔 ∈ (𝐴m (𝑀...𝑛)) ↔ 𝑔:(𝑀...𝑛)⟶𝐴))
105, 9syl5ibr 245 . . . . . . . . . 10 (𝜑 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) → 𝑔 ∈ (𝐴m (𝑀...𝑛))))
1110abssdv 4025 . . . . . . . . 9 (𝜑 → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ (𝐴m (𝑀...𝑛)))
12 ovex 7390 . . . . . . . . 9 (𝐴m (𝑀...𝑛)) ∈ V
13 ssexg 5280 . . . . . . . . 9 (({𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ (𝐴m (𝑀...𝑛)) ∧ (𝐴m (𝑀...𝑛)) ∈ V) → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
1411, 12, 13sylancl 586 . . . . . . . 8 (𝜑 → {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
1514ralrimivw 3147 . . . . . . 7 (𝜑 → ∀𝑛𝑍 {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
16 abrexex2g 7897 . . . . . . 7 ((𝑍 ∈ V ∧ ∀𝑛𝑍 {𝑔 ∣ (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V) → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
174, 15, 16sylancr 587 . . . . . 6 (𝜑 → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ∈ V)
182, 17eqeltrid 2842 . . . . 5 (𝜑𝐽 ∈ V)
1918adantr 481 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐽 ∈ V)
20 sdc.7 . . . . . . . . 9 (𝜑𝑀 ∈ ℤ)
2120adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀 ∈ ℤ)
22 uzid 12778 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2321, 22syl 17 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀 ∈ (ℤ𝑀))
2423, 3eleqtrrdi 2849 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑀𝑍)
25 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔:{𝑀}⟶𝐴)
26 fzsn 13483 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀...𝑀) = {𝑀})
2721, 26syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑀...𝑀) = {𝑀})
2827feq2d 6654 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑔:(𝑀...𝑀)⟶𝐴𝑔:{𝑀}⟶𝐴))
2925, 28mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔:(𝑀...𝑀)⟶𝐴)
30 simprr 771 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝜏)
31 oveq2 7365 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑀...𝑛) = (𝑀...𝑀))
3231feq2d 6654 . . . . . . . 8 (𝑛 = 𝑀 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑀)⟶𝐴))
33 sdc.3 . . . . . . . 8 (𝑛 = 𝑀 → (𝜓𝜏))
3432, 33anbi12d 631 . . . . . . 7 (𝑛 = 𝑀 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑀)⟶𝐴𝜏)))
3534rspcev 3581 . . . . . 6 ((𝑀𝑍 ∧ (𝑔:(𝑀...𝑀)⟶𝐴𝜏)) → ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
3624, 29, 30, 35syl12anc 835 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
372eqabi 2881 . . . . 5 (𝑔𝐽 ↔ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓))
3836, 37sylibr 233 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝑔𝐽)
393peano2uzs 12827 . . . . . . . . . . . . . . . 16 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
4039ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → (𝑘 + 1) ∈ 𝑍)
41 simpr1 1194 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → :(𝑀...(𝑘 + 1))⟶𝐴)
42 simpr3 1196 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → 𝜎)
43 vex 3449 . . . . . . . . . . . . . . . . . 18 ∈ V
44 ovex 7390 . . . . . . . . . . . . . . . . . 18 (𝑘 + 1) ∈ V
45 sdc.5 . . . . . . . . . . . . . . . . . . 19 ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎))
4645a1i 11 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑔 = 𝑛 = (𝑘 + 1)) → (𝜓𝜎)))
4743, 44, 46sbc2iedv 3824 . . . . . . . . . . . . . . . . 17 (𝜑 → ([ / 𝑔][(𝑘 + 1) / 𝑛]𝜓𝜎))
4847ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → ([ / 𝑔][(𝑘 + 1) / 𝑛]𝜓𝜎))
4942, 48mpbird 256 . . . . . . . . . . . . . . 15 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → [ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)
50 nfv 1917 . . . . . . . . . . . . . . . . 17 𝑛 :(𝑀...(𝑘 + 1))⟶𝐴
51 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑛
52 nfsbc1v 3759 . . . . . . . . . . . . . . . . . 18 𝑛[(𝑘 + 1) / 𝑛]𝜓
5351, 52nfsbcw 3761 . . . . . . . . . . . . . . . . 17 𝑛[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓
5450, 53nfan 1902 . . . . . . . . . . . . . . . 16 𝑛(:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)
55 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝑀...𝑛) = (𝑀...(𝑘 + 1)))
5655feq2d 6654 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (:(𝑀...𝑛)⟶𝐴:(𝑀...(𝑘 + 1))⟶𝐴))
57 sbceq1a 3750 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝜓[(𝑘 + 1) / 𝑛]𝜓))
5857sbcbidv 3798 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → ([ / 𝑔]𝜓[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓))
5956, 58anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → ((:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)))
6054, 59rspce 3570 . . . . . . . . . . . . . . 15 (((𝑘 + 1) ∈ 𝑍 ∧ (:(𝑀...(𝑘 + 1))⟶𝐴[ / 𝑔][(𝑘 + 1) / 𝑛]𝜓)) → ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
6140, 41, 49, 60syl12anc 835 . . . . . . . . . . . . . 14 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
622eleq2i 2829 . . . . . . . . . . . . . . 15 (𝐽 ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)})
63 nfcv 2907 . . . . . . . . . . . . . . . . 17 𝑔𝑍
64 nfv 1917 . . . . . . . . . . . . . . . . . 18 𝑔 :(𝑀...𝑛)⟶𝐴
65 nfsbc1v 3759 . . . . . . . . . . . . . . . . . 18 𝑔[ / 𝑔]𝜓
6664, 65nfan 1902 . . . . . . . . . . . . . . . . 17 𝑔(:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)
6763, 66nfrexw 3296 . . . . . . . . . . . . . . . 16 𝑔𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)
68 feq1 6649 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝑔:(𝑀...𝑛)⟶𝐴:(𝑀...𝑛)⟶𝐴))
69 sbceq1a 3750 . . . . . . . . . . . . . . . . . 18 (𝑔 = → (𝜓[ / 𝑔]𝜓))
7068, 69anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑔 = → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)))
7170rexbidv 3175 . . . . . . . . . . . . . . . 16 (𝑔 = → (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓)))
7267, 43, 71elabf 3627 . . . . . . . . . . . . . . 15 ( ∈ {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
7362, 72bitri 274 . . . . . . . . . . . . . 14 (𝐽 ↔ ∃𝑛𝑍 (:(𝑀...𝑛)⟶𝐴[ / 𝑔]𝜓))
7461, 73sylibr 233 . . . . . . . . . . . . 13 (((𝜑𝑘𝑍) ∧ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)) → 𝐽)
7574rexlimdva2 3154 . . . . . . . . . . . 12 (𝜑 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) → 𝐽))
7675abssdv 4025 . . . . . . . . . . 11 (𝜑 → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽)
7776ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽)
7818ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → 𝐽 ∈ V)
79 elpw2g 5301 . . . . . . . . . . 11 (𝐽 ∈ V → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ↔ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽))
8078, 79syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ↔ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ⊆ 𝐽))
8177, 80mpbird 256 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽)
82 oveq2 7365 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝑀...𝑛) = (𝑀...𝑘))
8382feq2d 6654 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝑔:(𝑀...𝑛)⟶𝐴𝑔:(𝑀...𝑘)⟶𝐴))
84 sdc.4 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → (𝜓𝜃))
8583, 84anbi12d 631 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → ((𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ (𝑔:(𝑀...𝑘)⟶𝐴𝜃)))
8685cbvrexvw 3226 . . . . . . . . . . . . . . . 16 (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) ↔ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃))
87 sdc.9 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
8887reximdva 3165 . . . . . . . . . . . . . . . . 17 (𝜑 → (∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃𝑘𝑍(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
89 rexcom4 3271 . . . . . . . . . . . . . . . . 17 (∃𝑘𝑍(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
9088, 89syl6ib 250 . . . . . . . . . . . . . . . 16 (𝜑 → (∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9186, 90biimtrid 241 . . . . . . . . . . . . . . 15 (𝜑 → (∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9291ss2abdv 4020 . . . . . . . . . . . . . 14 (𝜑 → {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} ⊆ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
932, 92eqsstrid 3992 . . . . . . . . . . . . 13 (𝜑𝐽 ⊆ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
9493sselda 3944 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝑥 ∈ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
95 vex 3449 . . . . . . . . . . . . 13 𝑥 ∈ V
96 eqeq1 2740 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑥 → (𝑔 = ( ↾ (𝑀...𝑘)) ↔ 𝑥 = ( ↾ (𝑀...𝑘))))
97963anbi2d 1441 . . . . . . . . . . . . . . 15 (𝑔 = 𝑥 → ((:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9897rexbidv 3175 . . . . . . . . . . . . . 14 (𝑔 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
9998exbidv 1924 . . . . . . . . . . . . 13 (𝑔 = 𝑥 → (∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎) ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
10095, 99elab 3630 . . . . . . . . . . . 12 (𝑥 ∈ {𝑔 ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
10194, 100sylib 217 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
102 abn0 4340 . . . . . . . . . . 11 ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅ ↔ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎))
103101, 102sylibr 233 . . . . . . . . . 10 ((𝜑𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅)
104103adantlr 713 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅)
105 eldifsn 4747 . . . . . . . . 9 ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}) ↔ ({ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ 𝒫 𝐽 ∧ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ≠ ∅))
10681, 104, 105sylanbrc 583 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ 𝑥𝐽) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
107106adantrl 714 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑤𝑍𝑥𝐽)) → { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
108107ralrimivva 3197 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∀𝑤𝑍𝑥𝐽 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}))
109 sdc.11 . . . . . . 7 𝐹 = (𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
110109fmpo 8000 . . . . . 6 (∀𝑤𝑍𝑥𝐽 { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)} ∈ (𝒫 𝐽 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
111108, 110sylib 217 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
11220iftrued 4494 . . . . . . . . . 10 (𝜑 → if(𝑀 ∈ ℤ, 𝑀, 0) = 𝑀)
113112fveq2d 6846 . . . . . . . . 9 (𝜑 → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ𝑀))
114113, 3eqtr4di 2794 . . . . . . . 8 (𝜑 → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑍)
115114xpeq1d 5662 . . . . . . 7 (𝜑 → ((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽) = (𝑍 × 𝐽))
116115feq2d 6654 . . . . . 6 (𝜑 → (𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}) ↔ 𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅})))
117116biimpar 478 . . . . 5 ((𝜑𝐹:(𝑍 × 𝐽)⟶(𝒫 𝐽 ∖ {∅})) → 𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
118111, 117syldan 591 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → 𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅}))
119 0z 12510 . . . . . 6 0 ∈ ℤ
120119elimel 4555 . . . . 5 if(𝑀 ∈ ℤ, 𝑀, 0) ∈ ℤ
121 eqid 2736 . . . . 5 (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))
122120, 121axdc4uz 13889 . . . 4 ((𝐽 ∈ V ∧ 𝑔𝐽𝐹:((ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) × 𝐽)⟶(𝒫 𝐽 ∖ {∅})) → ∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
12319, 38, 118, 122syl3anc 1371 . . 3 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
12421iftrued 4494 . . . . . . . . . 10 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → if(𝑀 ∈ ℤ, 𝑀, 0) = 𝑀)
125124fveq2d 6846 . . . . . . . . 9 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = (ℤ𝑀))
126125, 3eqtr4di 2794 . . . . . . . 8 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑍)
127126feq2d 6654 . . . . . . 7 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽𝑗:𝑍𝐽))
12886abbii 2806 . . . . . . . . 9 {𝑔 ∣ ∃𝑛𝑍 (𝑔:(𝑀...𝑛)⟶𝐴𝜓)} = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
1292, 128eqtri 2764 . . . . . . . 8 𝐽 = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
130 feq3 6651 . . . . . . . 8 (𝐽 = {𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} → (𝑗:𝑍𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}))
131129, 130ax-mp 5 . . . . . . 7 (𝑗:𝑍𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)})
132127, 131bitrdi 286 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}))
133124fveqeq2d 6850 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ↔ (𝑗𝑀) = 𝑔))
134126raleqdv 3313 . . . . . 6 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ↔ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
135132, 133, 1343anbi123d 1436 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) ↔ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))))
136 sdc.2 . . . . . . 7 (𝑔 = (𝑓 ↾ (𝑀...𝑛)) → (𝜓𝜒))
1376ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝐴𝑉)
13820ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑀 ∈ ℤ)
1391ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∃𝑔(𝑔:{𝑀}⟶𝐴𝜏))
140 simpll 765 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝜑)
141140, 87sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) ∧ 𝑘𝑍) → ((𝑔:(𝑀...𝑘)⟶𝐴𝜃) → ∃(:(𝑀...(𝑘 + 1))⟶𝐴𝑔 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)))
142 nfv 1917 . . . . . . . 8 𝑘(𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏))
143 nfcv 2907 . . . . . . . . . 10 𝑘𝑗
144 nfcv 2907 . . . . . . . . . 10 𝑘𝑍
145 nfre1 3268 . . . . . . . . . . 11 𝑘𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)
146145nfab 2913 . . . . . . . . . 10 𝑘{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
147143, 144, 146nff 6664 . . . . . . . . 9 𝑘 𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)}
148 nfv 1917 . . . . . . . . 9 𝑘(𝑗𝑀) = 𝑔
149 nfcv 2907 . . . . . . . . . . . 12 𝑘𝑚
150129, 146nfcxfr 2905 . . . . . . . . . . . . . 14 𝑘𝐽
151 nfre1 3268 . . . . . . . . . . . . . . 15 𝑘𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)
152151nfab 2913 . . . . . . . . . . . . . 14 𝑘{ ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)}
153144, 150, 152nfmpo 7439 . . . . . . . . . . . . 13 𝑘(𝑤𝑍, 𝑥𝐽 ↦ { ∣ ∃𝑘𝑍 (:(𝑀...(𝑘 + 1))⟶𝐴𝑥 = ( ↾ (𝑀...𝑘)) ∧ 𝜎)})
154109, 153nfcxfr 2905 . . . . . . . . . . . 12 𝑘𝐹
155 nfcv 2907 . . . . . . . . . . . 12 𝑘(𝑗𝑚)
156149, 154, 155nfov 7387 . . . . . . . . . . 11 𝑘(𝑚𝐹(𝑗𝑚))
157156nfel2 2925 . . . . . . . . . 10 𝑘(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))
158144, 157nfralw 3294 . . . . . . . . 9 𝑘𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))
159147, 148, 158nf3an 1904 . . . . . . . 8 𝑘(𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))
160142, 159nfan 1902 . . . . . . 7 𝑘((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))))
161 simpr1 1194 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)})
162161, 131sylibr 233 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑗:𝑍𝐽)
16325adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → 𝑔:{𝑀}⟶𝐴)
164 simpr2 1195 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑗𝑀) = 𝑔)
165138, 26syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑀...𝑀) = {𝑀})
166164, 165feq12d 6656 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ((𝑗𝑀):(𝑀...𝑀)⟶𝐴𝑔:{𝑀}⟶𝐴))
167163, 166mpbird 256 . . . . . . 7 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → (𝑗𝑀):(𝑀...𝑀)⟶𝐴)
168 simpr3 1196 . . . . . . . 8 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))
169 fvoveq1 7380 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑗‘(𝑚 + 1)) = (𝑗‘(𝑤 + 1)))
170 id 22 . . . . . . . . . . 11 (𝑚 = 𝑤𝑚 = 𝑤)
171 fveq2 6842 . . . . . . . . . . 11 (𝑚 = 𝑤 → (𝑗𝑚) = (𝑗𝑤))
172170, 171oveq12d 7375 . . . . . . . . . 10 (𝑚 = 𝑤 → (𝑚𝐹(𝑗𝑚)) = (𝑤𝐹(𝑗𝑤)))
173169, 172eleq12d 2832 . . . . . . . . 9 (𝑚 = 𝑤 → ((𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ↔ (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤))))
174173rspccva 3580 . . . . . . . 8 ((∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)) ∧ 𝑤𝑍) → (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤)))
175168, 174sylan 580 . . . . . . 7 ((((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) ∧ 𝑤𝑍) → (𝑗‘(𝑤 + 1)) ∈ (𝑤𝐹(𝑗𝑤)))
1763, 136, 33, 84, 45, 137, 138, 139, 141, 2, 109, 160, 162, 167, 175sdclem2 36201 . . . . . 6 (((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) ∧ (𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚)))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
177176ex 413 . . . . 5 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:𝑍⟶{𝑔 ∣ ∃𝑘𝑍 (𝑔:(𝑀...𝑘)⟶𝐴𝜃)} ∧ (𝑗𝑀) = 𝑔 ∧ ∀𝑚𝑍 (𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
178135, 177sylbid 239 . . . 4 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ((𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
179178exlimdv 1936 . . 3 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → (∃𝑗(𝑗:(ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))⟶𝐽 ∧ (𝑗‘if(𝑀 ∈ ℤ, 𝑀, 0)) = 𝑔 ∧ ∀𝑚 ∈ (ℤ‘if(𝑀 ∈ ℤ, 𝑀, 0))(𝑗‘(𝑚 + 1)) ∈ (𝑚𝐹(𝑗𝑚))) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒)))
180123, 179mpd 15 . 2 ((𝜑 ∧ (𝑔:{𝑀}⟶𝐴𝜏)) → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
1811, 180exlimddv 1938 1 (𝜑 → ∃𝑓(𝑓:𝑍𝐴 ∧ ∀𝑛𝑍 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wne 2943  wral 3064  wrex 3073  Vcvv 3445  [wsbc 3739  cdif 3907  wss 3910  c0 4282  ifcif 4486  𝒫 cpw 4560  {csn 4586   × cxp 5631  cres 5635  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359  m cmap 8765  0cc0 11051  1c1 11052   + caddc 11054  cz 12499  cuz 12763  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-dc 10382  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  sdc  36203
  Copyright terms: Public domain W3C validator