MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3 Structured version   Visualization version   GIF version

Theorem dfoprab3 7867
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑤   𝑥,𝑧,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 7866 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)}
2 fvex 6769 . . . . 5 (1st𝑤) ∈ V
3 fvex 6769 . . . . 5 (2nd𝑤) ∈ V
4 eqcom 2745 . . . . . . . . . 10 (𝑥 = (1st𝑤) ↔ (1st𝑤) = 𝑥)
5 eqcom 2745 . . . . . . . . . 10 (𝑦 = (2nd𝑤) ↔ (2nd𝑤) = 𝑦)
64, 5anbi12i 626 . . . . . . . . 9 ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) ↔ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦))
7 eqopi 7840 . . . . . . . . 9 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩)
86, 7sylan2b 593 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩)
9 dfoprab3.1 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
108, 9syl 17 . . . . . . 7 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜑𝜓))
1110bicomd 222 . . . . . 6 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜓𝜑))
1211ex 412 . . . . 5 (𝑤 ∈ (V × V) → ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) → (𝜓𝜑)))
132, 3, 12sbc2iedv 3797 . . . 4 (𝑤 ∈ (V × V) → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓𝜑))
1413pm5.32i 574 . . 3 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑))
1514opabbii 5137 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)}
161, 15eqtr2i 2767 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  cop 4564  {copab 5132   × cxp 5578  cfv 6418  {coprab 7256  1st c1st 7802  2nd c2nd 7803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-oprab 7259  df-1st 7804  df-2nd 7805
This theorem is referenced by:  dfoprab4  7868  cnvoprab  7873  df1st2  7909  df2nd2  7910
  Copyright terms: Public domain W3C validator