![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfoprab3 | Structured version Visualization version GIF version |
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
dfoprab3.1 | ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
dfoprab3 | ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab3s 8053 | . 2 ⊢ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} | |
2 | fvex 6903 | . . . . 5 ⊢ (1st ‘𝑤) ∈ V | |
3 | fvex 6903 | . . . . 5 ⊢ (2nd ‘𝑤) ∈ V | |
4 | eqcom 2732 | . . . . . . . . . 10 ⊢ (𝑥 = (1st ‘𝑤) ↔ (1st ‘𝑤) = 𝑥) | |
5 | eqcom 2732 | . . . . . . . . . 10 ⊢ (𝑦 = (2nd ‘𝑤) ↔ (2nd ‘𝑤) = 𝑦) | |
6 | 4, 5 | anbi12i 626 | . . . . . . . . 9 ⊢ ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) ↔ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) |
7 | eqopi 8025 | . . . . . . . . 9 ⊢ ((𝑤 ∈ (V × V) ∧ ((1st ‘𝑤) = 𝑥 ∧ (2nd ‘𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩) | |
8 | 6, 7 | sylan2b 592 | . . . . . . . 8 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩) |
9 | dfoprab3.1 | . . . . . . . 8 ⊢ (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑 ↔ 𝜓)) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜑 ↔ 𝜓)) |
11 | 10 | bicomd 222 | . . . . . 6 ⊢ ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤))) → (𝜓 ↔ 𝜑)) |
12 | 11 | ex 411 | . . . . 5 ⊢ (𝑤 ∈ (V × V) → ((𝑥 = (1st ‘𝑤) ∧ 𝑦 = (2nd ‘𝑤)) → (𝜓 ↔ 𝜑))) |
13 | 2, 3, 12 | sbc2iedv 3853 | . . . 4 ⊢ (𝑤 ∈ (V × V) → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓 ↔ 𝜑)) |
14 | 13 | pm5.32i 573 | . . 3 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑)) |
15 | 14 | opabbii 5208 | . 2 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} |
16 | 1, 15 | eqtr2i 2754 | 1 ⊢ {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 [wsbc 3768 ⟨cop 4628 {copab 5203 × cxp 5668 ‘cfv 6541 {coprab 7415 1st c1st 7987 2nd c2nd 7988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5292 ax-nul 5299 ax-pr 5421 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-sbc 3769 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4317 df-if 4523 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-iota 6493 df-fun 6543 df-fv 6549 df-oprab 7418 df-1st 7989 df-2nd 7990 |
This theorem is referenced by: dfoprab4 8055 cnvoprab 8060 df1st2 8099 df2nd2 8100 |
Copyright terms: Public domain | W3C validator |