MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3 Structured version   Visualization version   GIF version

Theorem dfoprab3 7734
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑤   𝑥,𝑧,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 7733 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)}
2 fvex 6658 . . . . 5 (1st𝑤) ∈ V
3 fvex 6658 . . . . 5 (2nd𝑤) ∈ V
4 eqcom 2805 . . . . . . . . . 10 (𝑥 = (1st𝑤) ↔ (1st𝑤) = 𝑥)
5 eqcom 2805 . . . . . . . . . 10 (𝑦 = (2nd𝑤) ↔ (2nd𝑤) = 𝑦)
64, 5anbi12i 629 . . . . . . . . 9 ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) ↔ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦))
7 eqopi 7707 . . . . . . . . 9 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩)
86, 7sylan2b 596 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩)
9 dfoprab3.1 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
108, 9syl 17 . . . . . . 7 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜑𝜓))
1110bicomd 226 . . . . . 6 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜓𝜑))
1211ex 416 . . . . 5 (𝑤 ∈ (V × V) → ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) → (𝜓𝜑)))
132, 3, 12sbc2iedv 3797 . . . 4 (𝑤 ∈ (V × V) → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓𝜑))
1413pm5.32i 578 . . 3 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑))
1514opabbii 5097 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)}
161, 15eqtr2i 2822 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  [wsbc 3720  cop 4531  {copab 5092   × cxp 5517  cfv 6324  {coprab 7136  1st c1st 7669  2nd c2nd 7670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fv 6332  df-oprab 7139  df-1st 7671  df-2nd 7672
This theorem is referenced by:  dfoprab4  7735  cnvoprab  7740  df1st2  7776  df2nd2  7777
  Copyright terms: Public domain W3C validator