MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfoprab3 Structured version   Visualization version   GIF version

Theorem dfoprab3 7987
Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
dfoprab3.1 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
Assertion
Ref Expression
dfoprab3 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑤   𝑥,𝑧,𝑤,𝑦
Allowed substitution hints:   𝜑(𝑧,𝑤)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3
StepHypRef Expression
1 dfoprab3s 7986 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)}
2 fvex 6856 . . . . 5 (1st𝑤) ∈ V
3 fvex 6856 . . . . 5 (2nd𝑤) ∈ V
4 eqcom 2744 . . . . . . . . . 10 (𝑥 = (1st𝑤) ↔ (1st𝑤) = 𝑥)
5 eqcom 2744 . . . . . . . . . 10 (𝑦 = (2nd𝑤) ↔ (2nd𝑤) = 𝑦)
64, 5anbi12i 628 . . . . . . . . 9 ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) ↔ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦))
7 eqopi 7958 . . . . . . . . 9 ((𝑤 ∈ (V × V) ∧ ((1st𝑤) = 𝑥 ∧ (2nd𝑤) = 𝑦)) → 𝑤 = ⟨𝑥, 𝑦⟩)
86, 7sylan2b 595 . . . . . . . 8 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → 𝑤 = ⟨𝑥, 𝑦⟩)
9 dfoprab3.1 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → (𝜑𝜓))
108, 9syl 17 . . . . . . 7 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜑𝜓))
1110bicomd 222 . . . . . 6 ((𝑤 ∈ (V × V) ∧ (𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤))) → (𝜓𝜑))
1211ex 414 . . . . 5 (𝑤 ∈ (V × V) → ((𝑥 = (1st𝑤) ∧ 𝑦 = (2nd𝑤)) → (𝜓𝜑)))
132, 3, 12sbc2iedv 3825 . . . 4 (𝑤 ∈ (V × V) → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓𝜑))
1413pm5.32i 576 . . 3 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓) ↔ (𝑤 ∈ (V × V) ∧ 𝜑))
1514opabbii 5173 . 2 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜓)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)}
161, 15eqtr2i 2766 1 {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3446  [wsbc 3740  cop 4593  {copab 5168   × cxp 5632  cfv 6497  {coprab 7359  1st c1st 7920  2nd c2nd 7921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fv 6505  df-oprab 7362  df-1st 7922  df-2nd 7923
This theorem is referenced by:  dfoprab4  7988  cnvoprab  7993  df1st2  8031  df2nd2  8032
  Copyright terms: Public domain W3C validator