Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcie2s | Structured version Visualization version GIF version |
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
Ref | Expression |
---|---|
sbcie2s.a | ⊢ 𝐴 = (𝐸‘𝑊) |
sbcie2s.b | ⊢ 𝐵 = (𝐹‘𝑊) |
sbcie2s.1 | ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie2s | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6781 | . 2 ⊢ (𝐸‘𝑤) ∈ V | |
2 | fvex 6781 | . 2 ⊢ (𝐹‘𝑤) ∈ V | |
3 | simprl 767 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = (𝐸‘𝑤)) | |
4 | fveq2 6768 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
5 | sbcie2s.a | . . . . . . . 8 ⊢ 𝐴 = (𝐸‘𝑊) | |
6 | 4, 5 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = 𝐴) |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐸‘𝑤) = 𝐴) |
8 | 3, 7 | eqtrd 2779 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = 𝐴) |
9 | simprr 769 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = (𝐹‘𝑤)) | |
10 | fveq2 6768 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) | |
11 | sbcie2s.b | . . . . . . . 8 ⊢ 𝐵 = (𝐹‘𝑊) | |
12 | 10, 11 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = 𝐵) |
13 | 12 | adantr 480 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐹‘𝑤) = 𝐵) |
14 | 9, 13 | eqtrd 2779 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = 𝐵) |
15 | sbcie2s.1 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) | |
16 | 8, 14, 15 | syl2anc 583 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜑 ↔ 𝜓)) |
17 | 16 | bicomd 222 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜓 ↔ 𝜑)) |
18 | 17 | ex 412 | . 2 ⊢ (𝑤 = 𝑊 → ((𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤)) → (𝜓 ↔ 𝜑))) |
19 | 1, 2, 18 | sbc2iedv 3805 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 [wsbc 3719 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-iota 6388 df-fv 6438 |
This theorem is referenced by: istrkgc 26796 istrkgb 26797 istrkge 26799 istrkgl 26800 ishpg 27101 iscgra 27151 |
Copyright terms: Public domain | W3C validator |