MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   GIF version

Theorem sbcie2s 17090
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
sbcie2s.a 𝐴 = (𝐸𝑊)
sbcie2s.b 𝐵 = (𝐹𝑊)
sbcie2s.1 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbcie2s (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Distinct variable groups:   𝑎,𝑏,𝑤   𝐸,𝑎,𝑏   𝐹,𝑏   𝑊,𝑎,𝑏   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏)   𝜓(𝑤)   𝐴(𝑤,𝑎,𝑏)   𝐵(𝑤,𝑎,𝑏)   𝐸(𝑤)   𝐹(𝑤,𝑎)   𝑊(𝑤)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6901 . 2 (𝐸𝑤) ∈ V
2 fvex 6901 . 2 (𝐹𝑤) ∈ V
3 fveq2 6888 . . . . . 6 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
4 sbcie2s.a . . . . . 6 𝐴 = (𝐸𝑊)
53, 4eqtr4di 2790 . . . . 5 (𝑤 = 𝑊 → (𝐸𝑤) = 𝐴)
65eqeq2d 2743 . . . 4 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) ↔ 𝑎 = 𝐴))
76biimpd 228 . . 3 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) → 𝑎 = 𝐴))
8 fveq2 6888 . . . . . 6 (𝑤 = 𝑊 → (𝐹𝑤) = (𝐹𝑊))
9 sbcie2s.b . . . . . 6 𝐵 = (𝐹𝑊)
108, 9eqtr4di 2790 . . . . 5 (𝑤 = 𝑊 → (𝐹𝑤) = 𝐵)
1110eqeq2d 2743 . . . 4 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) ↔ 𝑏 = 𝐵))
1211biimpd 228 . . 3 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) → 𝑏 = 𝐵))
13 sbcie2s.1 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
1413a1i 11 . . 3 (𝑤 = 𝑊 → ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓)))
157, 12, 14syl2and 608 . 2 (𝑤 = 𝑊 → ((𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤)) → (𝜑𝜓)))
161, 2, 15sbc2iedv 3861 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  [wsbc 3776  cfv 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5305
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-iota 6492  df-fv 6548
This theorem is referenced by:  isassa  21402  istrkgc  27694  istrkgb  27695  istrkge  27697  istrkgl  27698  ishpg  27999  iscgra  28049
  Copyright terms: Public domain W3C validator