MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   GIF version

Theorem sbcie2s 17180
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
sbcie2s.a 𝐴 = (𝐸𝑊)
sbcie2s.b 𝐵 = (𝐹𝑊)
sbcie2s.1 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbcie2s (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Distinct variable groups:   𝑎,𝑏,𝑤   𝐸,𝑎,𝑏   𝐹,𝑏   𝑊,𝑎,𝑏   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏)   𝜓(𝑤)   𝐴(𝑤,𝑎,𝑏)   𝐵(𝑤,𝑎,𝑏)   𝐸(𝑤)   𝐹(𝑤,𝑎)   𝑊(𝑤)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6889 . 2 (𝐸𝑤) ∈ V
2 fvex 6889 . 2 (𝐹𝑤) ∈ V
3 fveq2 6876 . . . . . 6 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
4 sbcie2s.a . . . . . 6 𝐴 = (𝐸𝑊)
53, 4eqtr4di 2788 . . . . 5 (𝑤 = 𝑊 → (𝐸𝑤) = 𝐴)
65eqeq2d 2746 . . . 4 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) ↔ 𝑎 = 𝐴))
76biimpd 229 . . 3 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) → 𝑎 = 𝐴))
8 fveq2 6876 . . . . . 6 (𝑤 = 𝑊 → (𝐹𝑤) = (𝐹𝑊))
9 sbcie2s.b . . . . . 6 𝐵 = (𝐹𝑊)
108, 9eqtr4di 2788 . . . . 5 (𝑤 = 𝑊 → (𝐹𝑤) = 𝐵)
1110eqeq2d 2746 . . . 4 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) ↔ 𝑏 = 𝐵))
1211biimpd 229 . . 3 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) → 𝑏 = 𝐵))
13 sbcie2s.1 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
1413a1i 11 . . 3 (𝑤 = 𝑊 → ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓)))
157, 12, 14syl2and 608 . 2 (𝑤 = 𝑊 → ((𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤)) → (𝜑𝜓)))
161, 2, 15sbc2iedv 3842 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  [wsbc 3765  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539
This theorem is referenced by:  isassa  21816  istrkgc  28433  istrkgb  28434  istrkge  28436  istrkgl  28437  ishpg  28738  iscgra  28788
  Copyright terms: Public domain W3C validator