MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   GIF version

Theorem sbcie2s 17074
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.)
Hypotheses
Ref Expression
sbcie2s.a 𝐴 = (𝐸𝑊)
sbcie2s.b 𝐵 = (𝐹𝑊)
sbcie2s.1 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbcie2s (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Distinct variable groups:   𝑎,𝑏,𝑤   𝐸,𝑎,𝑏   𝐹,𝑏   𝑊,𝑎,𝑏   𝜓,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑤,𝑎,𝑏)   𝜓(𝑤)   𝐴(𝑤,𝑎,𝑏)   𝐵(𝑤,𝑎,𝑏)   𝐸(𝑤)   𝐹(𝑤,𝑎)   𝑊(𝑤)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6841 . 2 (𝐸𝑤) ∈ V
2 fvex 6841 . 2 (𝐹𝑤) ∈ V
3 fveq2 6828 . . . . . 6 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
4 sbcie2s.a . . . . . 6 𝐴 = (𝐸𝑊)
53, 4eqtr4di 2786 . . . . 5 (𝑤 = 𝑊 → (𝐸𝑤) = 𝐴)
65eqeq2d 2744 . . . 4 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) ↔ 𝑎 = 𝐴))
76biimpd 229 . . 3 (𝑤 = 𝑊 → (𝑎 = (𝐸𝑤) → 𝑎 = 𝐴))
8 fveq2 6828 . . . . . 6 (𝑤 = 𝑊 → (𝐹𝑤) = (𝐹𝑊))
9 sbcie2s.b . . . . . 6 𝐵 = (𝐹𝑊)
108, 9eqtr4di 2786 . . . . 5 (𝑤 = 𝑊 → (𝐹𝑤) = 𝐵)
1110eqeq2d 2744 . . . 4 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) ↔ 𝑏 = 𝐵))
1211biimpd 229 . . 3 (𝑤 = 𝑊 → (𝑏 = (𝐹𝑤) → 𝑏 = 𝐵))
13 sbcie2s.1 . . . 4 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
1413a1i 11 . . 3 (𝑤 = 𝑊 → ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓)))
157, 12, 14syl2and 608 . 2 (𝑤 = 𝑊 → ((𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤)) → (𝜑𝜓)))
161, 2, 15sbc2iedv 3814 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  [wsbc 3737  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-nul 5246
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-iota 6442  df-fv 6494
This theorem is referenced by:  isassa  21795  istrkgc  28433  istrkgb  28434  istrkge  28436  istrkgl  28437  ishpg  28738  iscgra  28788
  Copyright terms: Public domain W3C validator