![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcie2s | Structured version Visualization version GIF version |
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) (Revised by SN, 2-Mar-2025.) |
Ref | Expression |
---|---|
sbcie2s.a | ⊢ 𝐴 = (𝐸‘𝑊) |
sbcie2s.b | ⊢ 𝐵 = (𝐹‘𝑊) |
sbcie2s.1 | ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie2s | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6901 | . 2 ⊢ (𝐸‘𝑤) ∈ V | |
2 | fvex 6901 | . 2 ⊢ (𝐹‘𝑤) ∈ V | |
3 | fveq2 6888 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
4 | sbcie2s.a | . . . . . 6 ⊢ 𝐴 = (𝐸‘𝑊) | |
5 | 3, 4 | eqtr4di 2790 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = 𝐴) |
6 | 5 | eqeq2d 2743 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑎 = (𝐸‘𝑤) ↔ 𝑎 = 𝐴)) |
7 | 6 | biimpd 228 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑎 = (𝐸‘𝑤) → 𝑎 = 𝐴)) |
8 | fveq2 6888 | . . . . . 6 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) | |
9 | sbcie2s.b | . . . . . 6 ⊢ 𝐵 = (𝐹‘𝑊) | |
10 | 8, 9 | eqtr4di 2790 | . . . . 5 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = 𝐵) |
11 | 10 | eqeq2d 2743 | . . . 4 ⊢ (𝑤 = 𝑊 → (𝑏 = (𝐹‘𝑤) ↔ 𝑏 = 𝐵)) |
12 | 11 | biimpd 228 | . . 3 ⊢ (𝑤 = 𝑊 → (𝑏 = (𝐹‘𝑤) → 𝑏 = 𝐵)) |
13 | sbcie2s.1 | . . . 4 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) | |
14 | 13 | a1i 11 | . . 3 ⊢ (𝑤 = 𝑊 → ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓))) |
15 | 7, 12, 14 | syl2and 608 | . 2 ⊢ (𝑤 = 𝑊 → ((𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤)) → (𝜑 ↔ 𝜓))) |
16 | 1, 2, 15 | sbc2iedv 3861 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 [wsbc 3776 ‘cfv 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-nul 5305 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rab 3433 df-v 3476 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 |
This theorem is referenced by: isassa 21402 istrkgc 27694 istrkgb 27695 istrkge 27697 istrkgl 27698 ishpg 27999 iscgra 28049 |
Copyright terms: Public domain | W3C validator |