Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbcie2s | Structured version Visualization version GIF version |
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.) |
Ref | Expression |
---|---|
sbcie2s.a | ⊢ 𝐴 = (𝐸‘𝑊) |
sbcie2s.b | ⊢ 𝐵 = (𝐹‘𝑊) |
sbcie2s.1 | ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbcie2s | ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6822 | . 2 ⊢ (𝐸‘𝑤) ∈ V | |
2 | fvex 6822 | . 2 ⊢ (𝐹‘𝑤) ∈ V | |
3 | simprl 768 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = (𝐸‘𝑤)) | |
4 | fveq2 6809 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = (𝐸‘𝑊)) | |
5 | sbcie2s.a | . . . . . . . 8 ⊢ 𝐴 = (𝐸‘𝑊) | |
6 | 4, 5 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐸‘𝑤) = 𝐴) |
7 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐸‘𝑤) = 𝐴) |
8 | 3, 7 | eqtrd 2777 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑎 = 𝐴) |
9 | simprr 770 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = (𝐹‘𝑤)) | |
10 | fveq2 6809 | . . . . . . . 8 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = (𝐹‘𝑊)) | |
11 | sbcie2s.b | . . . . . . . 8 ⊢ 𝐵 = (𝐹‘𝑊) | |
12 | 10, 11 | eqtr4di 2795 | . . . . . . 7 ⊢ (𝑤 = 𝑊 → (𝐹‘𝑤) = 𝐵) |
13 | 12 | adantr 481 | . . . . . 6 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝐹‘𝑤) = 𝐵) |
14 | 9, 13 | eqtrd 2777 | . . . . 5 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → 𝑏 = 𝐵) |
15 | sbcie2s.1 | . . . . 5 ⊢ ((𝑎 = 𝐴 ∧ 𝑏 = 𝐵) → (𝜑 ↔ 𝜓)) | |
16 | 8, 14, 15 | syl2anc 584 | . . . 4 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜑 ↔ 𝜓)) |
17 | 16 | bicomd 222 | . . 3 ⊢ ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤))) → (𝜓 ↔ 𝜑)) |
18 | 17 | ex 413 | . 2 ⊢ (𝑤 = 𝑊 → ((𝑎 = (𝐸‘𝑤) ∧ 𝑏 = (𝐹‘𝑤)) → (𝜓 ↔ 𝜑))) |
19 | 1, 2, 18 | sbc2iedv 3810 | 1 ⊢ (𝑤 = 𝑊 → ([(𝐸‘𝑤) / 𝑎][(𝐹‘𝑤) / 𝑏]𝜓 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 [wsbc 3725 ‘cfv 6463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-nul 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-rab 3405 df-v 3443 df-sbc 3726 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 |
This theorem is referenced by: istrkgc 26923 istrkgb 26924 istrkge 26926 istrkgl 26927 ishpg 27228 iscgra 27278 |
Copyright terms: Public domain | W3C validator |