MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   GIF version

Theorem sbcie2s 16907
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
sbcie2s.a 𝐴 = (𝐸𝑊)
sbcie2s.b 𝐵 = (𝐹𝑊)
sbcie2s.1 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbcie2s (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜓𝜑))
Distinct variable groups:   𝑎,𝑏,𝑤   𝐸,𝑎,𝑏   𝐹,𝑏   𝑊,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑤,𝑎,𝑏)   𝐴(𝑤,𝑎,𝑏)   𝐵(𝑤,𝑎,𝑏)   𝐸(𝑤)   𝐹(𝑤,𝑎)   𝑊(𝑤)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6817 . 2 (𝐸𝑤) ∈ V
2 fvex 6817 . 2 (𝐹𝑤) ∈ V
3 simprl 769 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑎 = (𝐸𝑤))
4 fveq2 6804 . . . . . . . 8 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
5 sbcie2s.a . . . . . . . 8 𝐴 = (𝐸𝑊)
64, 5eqtr4di 2794 . . . . . . 7 (𝑤 = 𝑊 → (𝐸𝑤) = 𝐴)
76adantr 482 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝐸𝑤) = 𝐴)
83, 7eqtrd 2776 . . . . 5 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑎 = 𝐴)
9 simprr 771 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑏 = (𝐹𝑤))
10 fveq2 6804 . . . . . . . 8 (𝑤 = 𝑊 → (𝐹𝑤) = (𝐹𝑊))
11 sbcie2s.b . . . . . . . 8 𝐵 = (𝐹𝑊)
1210, 11eqtr4di 2794 . . . . . . 7 (𝑤 = 𝑊 → (𝐹𝑤) = 𝐵)
1312adantr 482 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝐹𝑤) = 𝐵)
149, 13eqtrd 2776 . . . . 5 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑏 = 𝐵)
15 sbcie2s.1 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
168, 14, 15syl2anc 585 . . . 4 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝜑𝜓))
1716bicomd 222 . . 3 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝜓𝜑))
1817ex 414 . 2 (𝑤 = 𝑊 → ((𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤)) → (𝜓𝜑)))
191, 2, 18sbc2iedv 3806 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  [wsbc 3721  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-nul 5239
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466
This theorem is referenced by:  istrkgc  26860  istrkgb  26861  istrkge  26863  istrkgl  26864  ishpg  27165  iscgra  27215
  Copyright terms: Public domain W3C validator