MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcie2s Structured version   Visualization version   GIF version

Theorem sbcie2s 16843
Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
sbcie2s.a 𝐴 = (𝐸𝑊)
sbcie2s.b 𝐵 = (𝐹𝑊)
sbcie2s.1 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
sbcie2s (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜓𝜑))
Distinct variable groups:   𝑎,𝑏,𝑤   𝐸,𝑎,𝑏   𝐹,𝑏   𝑊,𝑎,𝑏   𝜑,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑤)   𝜓(𝑤,𝑎,𝑏)   𝐴(𝑤,𝑎,𝑏)   𝐵(𝑤,𝑎,𝑏)   𝐸(𝑤)   𝐹(𝑤,𝑎)   𝑊(𝑤)

Proof of Theorem sbcie2s
StepHypRef Expression
1 fvex 6781 . 2 (𝐸𝑤) ∈ V
2 fvex 6781 . 2 (𝐹𝑤) ∈ V
3 simprl 767 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑎 = (𝐸𝑤))
4 fveq2 6768 . . . . . . . 8 (𝑤 = 𝑊 → (𝐸𝑤) = (𝐸𝑊))
5 sbcie2s.a . . . . . . . 8 𝐴 = (𝐸𝑊)
64, 5eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (𝐸𝑤) = 𝐴)
76adantr 480 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝐸𝑤) = 𝐴)
83, 7eqtrd 2779 . . . . 5 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑎 = 𝐴)
9 simprr 769 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑏 = (𝐹𝑤))
10 fveq2 6768 . . . . . . . 8 (𝑤 = 𝑊 → (𝐹𝑤) = (𝐹𝑊))
11 sbcie2s.b . . . . . . . 8 𝐵 = (𝐹𝑊)
1210, 11eqtr4di 2797 . . . . . . 7 (𝑤 = 𝑊 → (𝐹𝑤) = 𝐵)
1312adantr 480 . . . . . 6 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝐹𝑤) = 𝐵)
149, 13eqtrd 2779 . . . . 5 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → 𝑏 = 𝐵)
15 sbcie2s.1 . . . . 5 ((𝑎 = 𝐴𝑏 = 𝐵) → (𝜑𝜓))
168, 14, 15syl2anc 583 . . . 4 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝜑𝜓))
1716bicomd 222 . . 3 ((𝑤 = 𝑊 ∧ (𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤))) → (𝜓𝜑))
1817ex 412 . 2 (𝑤 = 𝑊 → ((𝑎 = (𝐸𝑤) ∧ 𝑏 = (𝐹𝑤)) → (𝜓𝜑)))
191, 2, 18sbc2iedv 3805 1 (𝑤 = 𝑊 → ([(𝐸𝑤) / 𝑎][(𝐹𝑤) / 𝑏]𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  [wsbc 3719  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-iota 6388  df-fv 6438
This theorem is referenced by:  istrkgc  26796  istrkgb  26797  istrkge  26799  istrkgl  26800  ishpg  27101  iscgra  27151
  Copyright terms: Public domain W3C validator