![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 414 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 416 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: sbc2iedv 3859 csbie2t 3931 frinxp 5759 ordelord 6391 foco2 7116 frxp 8129 mpocurryd 8273 omsmolem 8676 erth 8773 unblem1 9318 unwdomg 9607 cflim2 10286 distrlem1pr 11048 uz11 12877 elpq 12989 xmulge0 13295 max0add 15289 lcmfunsnlem2lem1 16608 divgcdcoprm0 16635 cncongr1 16637 prmpwdvds 16872 imasleval 17522 issgrpd 18689 dfgrp3lem 18998 resscntz 19288 ablfac1c 20032 lbsind 20969 isphld 21590 mplcoe5lem 21984 cply1mul 22224 smadiadetr 22607 chfacfisf 22786 chfacfisfcpmat 22787 chcoeffeq 22818 cayhamlem3 22819 tx1stc 23584 ioorcl 25536 coemullem 26214 xrlimcnp 26930 fsumdvdscom 27147 fsumvma 27176 cusgrres 29318 usgredgsscusgredg 29329 clwlkclwwlklem2a 29864 clwwlkext2edg 29922 frgrwopreglem5ALT 30188 frgr2wwlkeu 30193 frgr2wwlk1 30195 grpoidinvlem3 30372 htthlem 30783 atcvat4i 32263 abfmpeld 32497 ressupprn 32527 isarchi3 32952 qsidomlem2 33231 ordtconnlem1 33595 gonarlem 35074 fmlasucdisj 35079 funpartfun 35609 relowlssretop 36912 ltflcei 37151 neificl 37296 keridl 37575 eqvrelth 38152 cvrat4 38985 ps-2 39020 mpaaeu 42639 clcnvlem 43118 fcoresf1 46514 iccpartiltu 46825 2pwp1prm 46992 bgoldbtbnd 47212 isuspgrimlem 47284 lmod0rng 47403 lincext1 47634 |
Copyright terms: Public domain | W3C validator |