![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sbc2iedv 3889 csbie2t 3962 frinxp 5782 ordelord 6417 foco2 7143 frxp 8167 mpocurryd 8310 omsmolem 8713 erth 8814 unblem1 9356 unwdomg 9653 cflim2 10332 distrlem1pr 11094 uz11 12928 elpq 13040 xmulge0 13346 max0add 15359 lcmfunsnlem2lem1 16685 divgcdcoprm0 16712 cncongr1 16714 prmpwdvds 16951 imasleval 17601 issgrpd 18768 dfgrp3lem 19078 resscntz 19373 ablfac1c 20115 lbsind 21102 isphld 21695 mplcoe5lem 22080 cply1mul 22321 smadiadetr 22702 chfacfisf 22881 chfacfisfcpmat 22882 chcoeffeq 22913 cayhamlem3 22914 tx1stc 23679 ioorcl 25631 coemullem 26309 xrlimcnp 27029 fsumdvdscom 27246 fsumvma 27275 cusgrres 29484 usgredgsscusgredg 29495 clwlkclwwlklem2a 30030 clwwlkext2edg 30088 frgrwopreglem5ALT 30354 frgr2wwlkeu 30359 frgr2wwlk1 30361 grpoidinvlem3 30538 htthlem 30949 atcvat4i 32429 abfmpeld 32672 ressupprn 32702 isarchi3 33167 qsidomlem2 33446 ordtconnlem1 33870 gonarlem 35362 fmlasucdisj 35367 funpartfun 35907 relowlssretop 37329 ltflcei 37568 neificl 37713 keridl 37992 eqvrelth 38567 cvrat4 39400 ps-2 39435 mpaaeu 43107 clcnvlem 43585 fcoresf1 46984 iccpartiltu 47296 2pwp1prm 47463 bgoldbtbnd 47683 isuspgrimlem 47758 grimedg 47787 grimgrtri 47798 lmod0rng 47952 lincext1 48183 |
Copyright terms: Public domain | W3C validator |