![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 417 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 419 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: sbc2iedv 3863 csbie2t 3935 frinxp 5759 ordelord 6387 foco2 7109 frxp 8112 mpocurryd 8254 omsmolem 8656 erth 8752 unblem1 9295 unwdomg 9579 cflim2 10258 distrlem1pr 11020 uz11 12847 elpq 12959 xmulge0 13263 max0add 15257 lcmfunsnlem2lem1 16575 divgcdcoprm0 16602 cncongr1 16604 prmpwdvds 16837 imasleval 17487 issgrpd 18621 dfgrp3lem 18921 resscntz 19197 ablfac1c 19941 lbsind 20691 isphld 21207 mplcoe5lem 21594 cply1mul 21818 smadiadetr 22177 chfacfisf 22356 chfacfisfcpmat 22357 chcoeffeq 22388 cayhamlem3 22389 tx1stc 23154 ioorcl 25094 coemullem 25764 xrlimcnp 26473 fsumdvdscom 26689 fsumvma 26716 cusgrres 28705 usgredgsscusgredg 28716 clwlkclwwlklem2a 29251 clwwlkext2edg 29309 frgrwopreglem5ALT 29575 frgr2wwlkeu 29580 frgr2wwlk1 29582 grpoidinvlem3 29759 htthlem 30170 atcvat4i 31650 abfmpeld 31879 ressupprn 31912 isarchi3 32333 qsidomlem2 32572 ordtconnlem1 32904 gonarlem 34385 fmlasucdisj 34390 funpartfun 34915 relowlssretop 36244 ltflcei 36476 neificl 36621 keridl 36900 eqvrelth 37481 cvrat4 38314 ps-2 38349 mpaaeu 41892 clcnvlem 42374 fcoresf1 45779 iccpartiltu 46090 2pwp1prm 46257 bgoldbtbnd 46477 lmod0rng 46642 lincext1 47135 |
Copyright terms: Public domain | W3C validator |