| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3847 csbie2t 3917 frinxp 5742 ordelord 6379 foco2 7104 f1ounsn 7270 frxp 8130 mpocurryd 8273 omsmolem 8674 erth 8775 unblem1 9305 unwdomg 9603 cflim2 10282 distrlem1pr 11044 uz11 12882 elpq 12996 xmulge0 13305 max0add 15334 lcmfunsnlem2lem1 16662 divgcdcoprm0 16689 cncongr1 16691 prmpwdvds 16929 imasleval 17560 issgrpd 18713 dfgrp3lem 19026 resscntz 19321 ablfac1c 20059 lbsind 21043 isphld 21619 mplcoe5lem 22002 cply1mul 22239 smadiadetr 22618 chfacfisf 22797 chfacfisfcpmat 22798 chcoeffeq 22829 cayhamlem3 22830 tx1stc 23593 ioorcl 25535 coemullem 26212 xrlimcnp 26935 fsumdvdscom 27152 fsumvma 27181 cusgrres 29433 usgredgsscusgredg 29444 clwlkclwwlklem2a 29984 clwwlkext2edg 30042 frgrwopreglem5ALT 30308 frgr2wwlkeu 30313 frgr2wwlk1 30315 grpoidinvlem3 30492 htthlem 30903 atcvat4i 32383 abfmpeld 32637 ressupprn 32672 isarchi3 33190 qsidomlem2 33473 ordtconnlem1 33960 gonarlem 35421 fmlasucdisj 35426 funpartfun 35966 relowlssretop 37386 ltflcei 37637 neificl 37782 keridl 38061 eqvrelth 38634 cvrat4 39467 ps-2 39502 mpaaeu 43149 clcnvlem 43622 fcoresf1 47078 iccpartiltu 47416 2pwp1prm 47583 bgoldbtbnd 47803 isuspgrimlem 47888 grimedg 47928 grimgrtri 47941 lmod0rng 48184 lincext1 48410 |
| Copyright terms: Public domain | W3C validator |