| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3819 csbie2t 3889 frinxp 5702 ordelord 6329 foco2 7043 f1ounsn 7209 frxp 8059 mpocurryd 8202 omsmolem 8575 erth 8679 unblem1 9181 unwdomg 9476 cflim2 10157 distrlem1pr 10919 uz11 12760 elpq 12876 xmulge0 13186 max0add 15217 lcmfunsnlem2lem1 16549 divgcdcoprm0 16576 cncongr1 16578 prmpwdvds 16816 imasleval 17445 issgrpd 18604 dfgrp3lem 18917 resscntz 19212 ablfac1c 19952 lbsind 20984 isphld 21561 mplcoe5lem 21944 cply1mul 22181 smadiadetr 22560 chfacfisf 22739 chfacfisfcpmat 22740 chcoeffeq 22771 cayhamlem3 22772 tx1stc 23535 ioorcl 25476 coemullem 26153 xrlimcnp 26876 fsumdvdscom 27093 fsumvma 27122 cusgrres 29394 usgredgsscusgredg 29405 clwlkclwwlklem2a 29942 clwwlkext2edg 30000 frgrwopreglem5ALT 30266 frgr2wwlkeu 30271 frgr2wwlk1 30273 grpoidinvlem3 30450 htthlem 30861 atcvat4i 32341 abfmpeld 32598 ressupprn 32633 isarchi3 33130 qsidomlem2 33391 ordtconnlem1 33897 gonarlem 35377 fmlasucdisj 35382 funpartfun 35927 relowlssretop 37347 ltflcei 37598 neificl 37743 keridl 38022 eqvrelth 38598 cvrat4 39432 ps-2 39467 mpaaeu 43133 clcnvlem 43606 fcoresf1 47063 modlt0b 47357 iccpartiltu 47416 2pwp1prm 47583 bgoldbtbnd 47803 isuspgrimlem 47889 grimedg 47929 grimgrtri 47943 lmod0rng 48223 lincext1 48449 |
| Copyright terms: Public domain | W3C validator |