| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3827 csbie2t 3897 frinxp 5714 ordelord 6342 foco2 7063 f1ounsn 7229 frxp 8082 mpocurryd 8225 omsmolem 8598 erth 8702 unblem1 9215 unwdomg 9513 cflim2 10192 distrlem1pr 10954 uz11 12794 elpq 12910 xmulge0 13220 max0add 15252 lcmfunsnlem2lem1 16584 divgcdcoprm0 16611 cncongr1 16613 prmpwdvds 16851 imasleval 17480 issgrpd 18639 dfgrp3lem 18952 resscntz 19247 ablfac1c 19987 lbsind 21019 isphld 21596 mplcoe5lem 21979 cply1mul 22216 smadiadetr 22595 chfacfisf 22774 chfacfisfcpmat 22775 chcoeffeq 22806 cayhamlem3 22807 tx1stc 23570 ioorcl 25511 coemullem 26188 xrlimcnp 26911 fsumdvdscom 27128 fsumvma 27157 cusgrres 29429 usgredgsscusgredg 29440 clwlkclwwlklem2a 29977 clwwlkext2edg 30035 frgrwopreglem5ALT 30301 frgr2wwlkeu 30306 frgr2wwlk1 30308 grpoidinvlem3 30485 htthlem 30896 atcvat4i 32376 abfmpeld 32628 ressupprn 32663 isarchi3 33156 qsidomlem2 33417 ordtconnlem1 33907 gonarlem 35374 fmlasucdisj 35379 funpartfun 35924 relowlssretop 37344 ltflcei 37595 neificl 37740 keridl 38019 eqvrelth 38595 cvrat4 39430 ps-2 39465 mpaaeu 43132 clcnvlem 43605 fcoresf1 47063 modlt0b 47357 iccpartiltu 47416 2pwp1prm 47583 bgoldbtbnd 47803 isuspgrimlem 47888 grimedg 47928 grimgrtri 47941 lmod0rng 48210 lincext1 48436 |
| Copyright terms: Public domain | W3C validator |