Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 421 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: sbc2iedv 3774 csbie2t 3843 frinxp 5603 ordelord 6191 foco2 6864 frxp 7825 mpocurryd 7945 omsmolem 8290 erth 8348 unblem1 8803 unwdomg 9081 cflim2 9723 distrlem1pr 10485 uz11 12307 elpq 12415 xmulge0 12718 max0add 14718 lcmfunsnlem2lem1 16034 divgcdcoprm0 16061 cncongr1 16063 prmpwdvds 16295 imasleval 16872 dfgrp3lem 18264 resscntz 18529 ablfac1c 19261 lbsind 19920 isphld 20419 mplcoe5lem 20799 cply1mul 21018 smadiadetr 21375 chfacfisf 21554 chfacfisfcpmat 21555 chcoeffeq 21586 cayhamlem3 21587 tx1stc 22350 ioorcl 24277 coemullem 24946 xrlimcnp 25653 fsumdvdscom 25869 fsumvma 25896 cusgrres 27337 usgredgsscusgredg 27348 clwlkclwwlklem2a 27882 clwwlkext2edg 27940 frgrwopreglem5ALT 28206 frgr2wwlkeu 28211 frgr2wwlk1 28213 grpoidinvlem3 28388 htthlem 28799 atcvat4i 30279 abfmpeld 30515 ressupprn 30548 isarchi3 30967 qsidomlem2 31150 ordtconnlem1 31395 gonarlem 32872 fmlasucdisj 32877 funpartfun 33794 relowlssretop 35060 ltflcei 35325 neificl 35471 keridl 35750 eqvrelth 36286 cvrat4 37019 ps-2 37054 mpaaeu 40467 clcnvlem 40696 iccpartiltu 44307 2pwp1prm 44474 bgoldbtbnd 44694 lmod0rng 44859 lincext1 45228 |
Copyright terms: Public domain | W3C validator |