![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sbc2iedv 3883 csbie2t 3956 frinxp 5781 ordelord 6416 foco2 7141 frxp 8163 mpocurryd 8306 omsmolem 8709 erth 8810 unblem1 9352 unwdomg 9649 cflim2 10328 distrlem1pr 11090 uz11 12924 elpq 13036 xmulge0 13342 max0add 15355 lcmfunsnlem2lem1 16679 divgcdcoprm0 16706 cncongr1 16708 prmpwdvds 16946 imasleval 17596 issgrpd 18763 dfgrp3lem 19073 resscntz 19368 ablfac1c 20110 lbsind 21097 isphld 21690 mplcoe5lem 22074 cply1mul 22314 smadiadetr 22695 chfacfisf 22874 chfacfisfcpmat 22875 chcoeffeq 22906 cayhamlem3 22907 tx1stc 23672 ioorcl 25624 coemullem 26301 xrlimcnp 27020 fsumdvdscom 27237 fsumvma 27266 cusgrres 29475 usgredgsscusgredg 29486 clwlkclwwlklem2a 30021 clwwlkext2edg 30079 frgrwopreglem5ALT 30345 frgr2wwlkeu 30350 frgr2wwlk1 30352 grpoidinvlem3 30529 htthlem 30940 atcvat4i 32420 abfmpeld 32664 ressupprn 32694 isarchi3 33159 qsidomlem2 33438 ordtconnlem1 33862 gonarlem 35354 fmlasucdisj 35359 funpartfun 35899 relowlssretop 37277 ltflcei 37516 neificl 37661 keridl 37940 eqvrelth 38515 cvrat4 39348 ps-2 39383 mpaaeu 43047 clcnvlem 43525 fcoresf1 46918 iccpartiltu 47228 2pwp1prm 47395 bgoldbtbnd 47615 isuspgrimlem 47687 grimedg 47716 grimgrtri 47726 lmod0rng 47870 lincext1 48101 |
Copyright terms: Public domain | W3C validator |