![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: sbc2iedv 3876 csbie2t 3949 frinxp 5771 ordelord 6408 foco2 7129 f1ounsn 7292 frxp 8150 mpocurryd 8293 omsmolem 8694 erth 8795 unblem1 9326 unwdomg 9622 cflim2 10301 distrlem1pr 11063 uz11 12901 elpq 13015 xmulge0 13323 max0add 15346 lcmfunsnlem2lem1 16672 divgcdcoprm0 16699 cncongr1 16701 prmpwdvds 16938 imasleval 17588 issgrpd 18756 dfgrp3lem 19069 resscntz 19364 ablfac1c 20106 lbsind 21097 isphld 21690 mplcoe5lem 22075 cply1mul 22316 smadiadetr 22697 chfacfisf 22876 chfacfisfcpmat 22877 chcoeffeq 22908 cayhamlem3 22909 tx1stc 23674 ioorcl 25626 coemullem 26304 xrlimcnp 27026 fsumdvdscom 27243 fsumvma 27272 cusgrres 29481 usgredgsscusgredg 29492 clwlkclwwlklem2a 30027 clwwlkext2edg 30085 frgrwopreglem5ALT 30351 frgr2wwlkeu 30356 frgr2wwlk1 30358 grpoidinvlem3 30535 htthlem 30946 atcvat4i 32426 abfmpeld 32671 ressupprn 32705 isarchi3 33177 qsidomlem2 33461 ordtconnlem1 33885 gonarlem 35379 fmlasucdisj 35384 funpartfun 35925 relowlssretop 37346 ltflcei 37595 neificl 37740 keridl 38019 eqvrelth 38593 cvrat4 39426 ps-2 39461 mpaaeu 43139 clcnvlem 43613 fcoresf1 47019 iccpartiltu 47347 2pwp1prm 47514 bgoldbtbnd 47734 isuspgrimlem 47812 grimedg 47841 grimgrtri 47852 lmod0rng 48073 lincext1 48300 |
Copyright terms: Public domain | W3C validator |