Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sbc2iedv 3797 csbie2t 3869 frinxp 5660 ordelord 6273 foco2 6965 frxp 7938 mpocurryd 8056 omsmolem 8447 erth 8505 unblem1 8996 unwdomg 9273 cflim2 9950 distrlem1pr 10712 uz11 12536 elpq 12644 xmulge0 12947 max0add 14950 lcmfunsnlem2lem1 16271 divgcdcoprm0 16298 cncongr1 16300 prmpwdvds 16533 imasleval 17169 dfgrp3lem 18588 resscntz 18853 ablfac1c 19589 lbsind 20257 isphld 20771 mplcoe5lem 21150 cply1mul 21375 smadiadetr 21732 chfacfisf 21911 chfacfisfcpmat 21912 chcoeffeq 21943 cayhamlem3 21944 tx1stc 22709 ioorcl 24646 coemullem 25316 xrlimcnp 26023 fsumdvdscom 26239 fsumvma 26266 cusgrres 27718 usgredgsscusgredg 27729 clwlkclwwlklem2a 28263 clwwlkext2edg 28321 frgrwopreglem5ALT 28587 frgr2wwlkeu 28592 frgr2wwlk1 28594 grpoidinvlem3 28769 htthlem 29180 atcvat4i 30660 abfmpeld 30893 ressupprn 30926 isarchi3 31343 qsidomlem2 31531 ordtconnlem1 31776 gonarlem 33256 fmlasucdisj 33261 funpartfun 34172 relowlssretop 35461 ltflcei 35692 neificl 35838 keridl 36117 eqvrelth 36651 cvrat4 37384 ps-2 37419 mpaaeu 40891 clcnvlem 41120 fcoresf1 44450 iccpartiltu 44762 2pwp1prm 44929 bgoldbtbnd 45149 lmod0rng 45314 lincext1 45683 |
Copyright terms: Public domain | W3C validator |