![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: sbc2iedv 3858 csbie2t 3930 frinxp 5754 ordelord 6385 foco2 7113 frxp 8125 mpocurryd 8268 omsmolem 8671 erth 8768 unblem1 9311 unwdomg 9599 cflim2 10278 distrlem1pr 11040 uz11 12869 elpq 12981 xmulge0 13287 max0add 15281 lcmfunsnlem2lem1 16600 divgcdcoprm0 16627 cncongr1 16629 prmpwdvds 16864 imasleval 17514 issgrpd 18681 dfgrp3lem 18985 resscntz 19275 ablfac1c 20019 lbsind 20954 isphld 21573 mplcoe5lem 21964 cply1mul 22202 smadiadetr 22564 chfacfisf 22743 chfacfisfcpmat 22744 chcoeffeq 22775 cayhamlem3 22776 tx1stc 23541 ioorcl 25493 coemullem 26171 xrlimcnp 26887 fsumdvdscom 27104 fsumvma 27133 cusgrres 29249 usgredgsscusgredg 29260 clwlkclwwlklem2a 29795 clwwlkext2edg 29853 frgrwopreglem5ALT 30119 frgr2wwlkeu 30124 frgr2wwlk1 30126 grpoidinvlem3 30303 htthlem 30714 atcvat4i 32194 abfmpeld 32423 ressupprn 32454 isarchi3 32873 qsidomlem2 33105 ordtconnlem1 33461 gonarlem 34940 fmlasucdisj 34945 funpartfun 35475 relowlssretop 36778 ltflcei 37016 neificl 37161 keridl 37440 eqvrelth 38020 cvrat4 38853 ps-2 38888 mpaaeu 42496 clcnvlem 42976 fcoresf1 46374 iccpartiltu 46685 2pwp1prm 46852 bgoldbtbnd 47072 isuspgrimlem 47095 lmod0rng 47214 lincext1 47445 |
Copyright terms: Public domain | W3C validator |