| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3866 csbie2t 3936 frinxp 5767 ordelord 6405 foco2 7128 f1ounsn 7293 frxp 8152 mpocurryd 8295 omsmolem 8696 erth 8797 unblem1 9329 unwdomg 9625 cflim2 10304 distrlem1pr 11066 uz11 12904 elpq 13018 xmulge0 13327 max0add 15350 lcmfunsnlem2lem1 16676 divgcdcoprm0 16703 cncongr1 16705 prmpwdvds 16943 imasleval 17587 issgrpd 18744 dfgrp3lem 19057 resscntz 19352 ablfac1c 20092 lbsind 21080 isphld 21673 mplcoe5lem 22058 cply1mul 22301 smadiadetr 22682 chfacfisf 22861 chfacfisfcpmat 22862 chcoeffeq 22893 cayhamlem3 22894 tx1stc 23659 ioorcl 25613 coemullem 26290 xrlimcnp 27012 fsumdvdscom 27229 fsumvma 27258 cusgrres 29467 usgredgsscusgredg 29478 clwlkclwwlklem2a 30018 clwwlkext2edg 30076 frgrwopreglem5ALT 30342 frgr2wwlkeu 30347 frgr2wwlk1 30349 grpoidinvlem3 30526 htthlem 30937 atcvat4i 32417 abfmpeld 32665 ressupprn 32700 isarchi3 33195 qsidomlem2 33482 ordtconnlem1 33924 gonarlem 35400 fmlasucdisj 35405 funpartfun 35945 relowlssretop 37365 ltflcei 37616 neificl 37761 keridl 38040 eqvrelth 38613 cvrat4 39446 ps-2 39481 mpaaeu 43167 clcnvlem 43641 fcoresf1 47086 iccpartiltu 47414 2pwp1prm 47581 bgoldbtbnd 47801 isuspgrimlem 47879 grimedg 47908 grimgrtri 47921 lmod0rng 48150 lincext1 48376 |
| Copyright terms: Public domain | W3C validator |