| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3813 csbie2t 3883 frinxp 5697 ordelord 6328 foco2 7042 f1ounsn 7206 frxp 8056 mpocurryd 8199 omsmolem 8572 erth 8676 unblem1 9176 unwdomg 9470 cflim2 10154 distrlem1pr 10916 uz11 12757 elpq 12873 xmulge0 13183 max0add 15217 lcmfunsnlem2lem1 16549 divgcdcoprm0 16576 cncongr1 16578 prmpwdvds 16816 imasleval 17445 issgrpd 18638 dfgrp3lem 18951 resscntz 19245 ablfac1c 19985 lbsind 21014 isphld 21591 mplcoe5lem 21974 cply1mul 22211 smadiadetr 22590 chfacfisf 22769 chfacfisfcpmat 22770 chcoeffeq 22801 cayhamlem3 22802 tx1stc 23565 ioorcl 25505 coemullem 26182 xrlimcnp 26905 fsumdvdscom 27122 fsumvma 27151 cusgrres 29427 usgredgsscusgredg 29438 clwlkclwwlklem2a 29978 clwwlkext2edg 30036 frgrwopreglem5ALT 30302 frgr2wwlkeu 30307 frgr2wwlk1 30309 grpoidinvlem3 30486 htthlem 30897 atcvat4i 32377 abfmpeld 32636 ressupprn 32671 isarchi3 33156 qsidomlem2 33418 ordtconnlem1 33937 gonarlem 35438 fmlasucdisj 35443 funpartfun 35987 relowlssretop 37407 ltflcei 37658 neificl 37803 keridl 38082 eqvrelth 38717 cvrat4 39552 ps-2 39587 mpaaeu 43253 clcnvlem 43726 fcoresf1 47179 modlt0b 47473 iccpartiltu 47532 2pwp1prm 47699 bgoldbtbnd 47919 isuspgrimlem 48005 grimedg 48045 grimgrtri 48059 lmod0rng 48339 lincext1 48565 |
| Copyright terms: Public domain | W3C validator |