Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Ref | Expression |
---|---|
impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
2 | 1 | expd 416 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 418 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: sbc2iedv 3801 csbie2t 3873 frinxp 5669 ordelord 6288 foco2 6983 frxp 7967 mpocurryd 8085 omsmolem 8487 erth 8547 unblem1 9066 unwdomg 9343 cflim2 10019 distrlem1pr 10781 uz11 12607 elpq 12715 xmulge0 13018 max0add 15022 lcmfunsnlem2lem1 16343 divgcdcoprm0 16370 cncongr1 16372 prmpwdvds 16605 imasleval 17252 dfgrp3lem 18673 resscntz 18938 ablfac1c 19674 lbsind 20342 isphld 20859 mplcoe5lem 21240 cply1mul 21465 smadiadetr 21824 chfacfisf 22003 chfacfisfcpmat 22004 chcoeffeq 22035 cayhamlem3 22036 tx1stc 22801 ioorcl 24741 coemullem 25411 xrlimcnp 26118 fsumdvdscom 26334 fsumvma 26361 cusgrres 27815 usgredgsscusgredg 27826 clwlkclwwlklem2a 28362 clwwlkext2edg 28420 frgrwopreglem5ALT 28686 frgr2wwlkeu 28691 frgr2wwlk1 28693 grpoidinvlem3 28868 htthlem 29279 atcvat4i 30759 abfmpeld 30991 ressupprn 31024 isarchi3 31441 qsidomlem2 31629 ordtconnlem1 31874 gonarlem 33356 fmlasucdisj 33361 funpartfun 34245 relowlssretop 35534 ltflcei 35765 neificl 35911 keridl 36190 eqvrelth 36724 cvrat4 37457 ps-2 37492 mpaaeu 40975 clcnvlem 41231 fcoresf1 44563 iccpartiltu 44874 2pwp1prm 45041 bgoldbtbnd 45261 lmod0rng 45426 lincext1 45795 |
Copyright terms: Public domain | W3C validator |