| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > impl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 415 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 417 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: sbc2iedv 3832 csbie2t 3902 frinxp 5723 ordelord 6356 foco2 7083 f1ounsn 7249 frxp 8107 mpocurryd 8250 omsmolem 8623 erth 8727 unblem1 9245 unwdomg 9543 cflim2 10222 distrlem1pr 10984 uz11 12824 elpq 12940 xmulge0 13250 max0add 15282 lcmfunsnlem2lem1 16614 divgcdcoprm0 16641 cncongr1 16643 prmpwdvds 16881 imasleval 17510 issgrpd 18663 dfgrp3lem 18976 resscntz 19271 ablfac1c 20009 lbsind 20993 isphld 21569 mplcoe5lem 21952 cply1mul 22189 smadiadetr 22568 chfacfisf 22747 chfacfisfcpmat 22748 chcoeffeq 22779 cayhamlem3 22780 tx1stc 23543 ioorcl 25484 coemullem 26161 xrlimcnp 26884 fsumdvdscom 27101 fsumvma 27130 cusgrres 29382 usgredgsscusgredg 29393 clwlkclwwlklem2a 29933 clwwlkext2edg 29991 frgrwopreglem5ALT 30257 frgr2wwlkeu 30262 frgr2wwlk1 30264 grpoidinvlem3 30441 htthlem 30852 atcvat4i 32332 abfmpeld 32584 ressupprn 32619 isarchi3 33147 qsidomlem2 33430 ordtconnlem1 33920 gonarlem 35381 fmlasucdisj 35386 funpartfun 35926 relowlssretop 37346 ltflcei 37597 neificl 37742 keridl 38021 eqvrelth 38597 cvrat4 39432 ps-2 39467 mpaaeu 43132 clcnvlem 43605 fcoresf1 47060 modlt0b 47354 iccpartiltu 47413 2pwp1prm 47580 bgoldbtbnd 47800 isuspgrimlem 47885 grimedg 47925 grimgrtri 47938 lmod0rng 48207 lincext1 48433 |
| Copyright terms: Public domain | W3C validator |