![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc3ie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbc3ie.1 | ⊢ 𝐴 ∈ V |
sbc3ie.2 | ⊢ 𝐵 ∈ V |
sbc3ie.3 | ⊢ 𝐶 ∈ V |
sbc3ie.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc3ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc3ie.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | sbc3ie.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 ∈ V) |
5 | sbc3ie.4 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
6 | 5 | 3expa 1117 | . . 3 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | sbcied 3837 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ([𝐶 / 𝑧]𝜑 ↔ 𝜓)) |
8 | 1, 2, 7 | sbc2ie 3874 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 Vcvv 3478 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: isdlat 18580 islmod 20879 isslmd 33191 hdmap1fval 41779 hdmapfval 41810 hgmapfval 41869 rmydioph 43003 |
Copyright terms: Public domain | W3C validator |