| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbc3ie | Structured version Visualization version GIF version | ||
| Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| sbc3ie.1 | ⊢ 𝐴 ∈ V |
| sbc3ie.2 | ⊢ 𝐵 ∈ V |
| sbc3ie.3 | ⊢ 𝐶 ∈ V |
| sbc3ie.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbc3ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc3ie.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | sbc3ie.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | sbc3ie.3 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 3 | a1i 11 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 ∈ V) |
| 5 | sbc3ie.4 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
| 6 | 5 | 3expa 1118 | . . 3 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
| 7 | 4, 6 | sbcied 3814 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ([𝐶 / 𝑧]𝜑 ↔ 𝜓)) |
| 8 | 1, 2, 7 | sbc2ie 3846 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3464 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: isdlat 18537 islmod 20826 isslmd 33204 hdmap1fval 41820 hdmapfval 41851 hgmapfval 41910 rmydioph 43005 |
| Copyright terms: Public domain | W3C validator |