![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc3ie | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Jun-2014.) (Revised by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
sbc3ie.1 | ⊢ 𝐴 ∈ V |
sbc3ie.2 | ⊢ 𝐵 ∈ V |
sbc3ie.3 | ⊢ 𝐶 ∈ V |
sbc3ie.4 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbc3ie | ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3ie.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | sbc3ie.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | sbc3ie.3 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝐶 ∈ V) |
5 | sbc3ie.4 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) | |
6 | 5 | 3expa 1116 | . . 3 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑧 = 𝐶) → (𝜑 ↔ 𝜓)) |
7 | 4, 6 | sbcied 3822 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ([𝐶 / 𝑧]𝜑 ↔ 𝜓)) |
8 | 1, 2, 7 | sbc2ie 3859 | 1 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦][𝐶 / 𝑧]𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3471 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-sbc 3777 |
This theorem is referenced by: isdlat 18514 islmod 20747 isslmd 32922 hdmap1fval 41269 hdmapfval 41300 hgmapfval 41359 rmydioph 42435 |
Copyright terms: Public domain | W3C validator |