Step | Hyp | Ref
| Expression |
1 | | elmptrab.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐷 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) |
2 | 1 | mptrcl 6884 |
. 2
⊢ (𝑌 ∈ (𝐹‘𝑋) → 𝑋 ∈ 𝐷) |
3 | | simp1 1135 |
. 2
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) → 𝑋 ∈ 𝐷) |
4 | | csbeq1 3835 |
. . . . . 6
⊢ (𝑧 = 𝑋 → ⦋𝑧 / 𝑥⦌𝐵 = ⦋𝑋 / 𝑥⦌𝐵) |
5 | | dfsbcq 3718 |
. . . . . 6
⊢ (𝑧 = 𝑋 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑)) |
6 | 4, 5 | rabeqbidv 3420 |
. . . . 5
⊢ (𝑧 = 𝑋 → {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑} = {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑}) |
7 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑧{𝑦 ∈ 𝐵 ∣ 𝜑} |
8 | | nfsbc1v 3736 |
. . . . . . . 8
⊢
Ⅎ𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 |
9 | | nfcsb1v 3857 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 |
10 | 8, 9 | nfrabw 3318 |
. . . . . . 7
⊢
Ⅎ𝑥{𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑} |
11 | | csbeq1a 3846 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
12 | | sbceq1a 3727 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
13 | 11, 12 | rabeqbidv 3420 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥]𝜑}) |
14 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑤⦋𝑧 / 𝑥⦌𝐵 |
15 | | nfcv 2907 |
. . . . . . . . 9
⊢
Ⅎ𝑦⦋𝑧 / 𝑥⦌𝐵 |
16 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝑧 |
17 | | nfsbc1v 3736 |
. . . . . . . . . 10
⊢
Ⅎ𝑦[𝑤 / 𝑦]𝜑 |
18 | 16, 17 | nfsbcw 3738 |
. . . . . . . . 9
⊢
Ⅎ𝑦[𝑧 / 𝑥][𝑤 / 𝑦]𝜑 |
19 | | nfv 1917 |
. . . . . . . . 9
⊢
Ⅎ𝑤[𝑧 / 𝑥]𝜑 |
20 | | sbccom 3804 |
. . . . . . . . . 10
⊢
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑) |
21 | | sbceq1a 3727 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑤 → ([𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
22 | 21 | equcoms 2023 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑤 / 𝑦][𝑧 / 𝑥]𝜑)) |
23 | 20, 22 | bitr4id 290 |
. . . . . . . . 9
⊢ (𝑤 = 𝑦 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
24 | 14, 15, 18, 19, 23 | cbvrabw 3424 |
. . . . . . . 8
⊢ {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑} = {𝑦 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥]𝜑} |
25 | 13, 24 | eqtr4di 2796 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → {𝑦 ∈ 𝐵 ∣ 𝜑} = {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑}) |
26 | 7, 10, 25 | cbvmpt 5185 |
. . . . . 6
⊢ (𝑥 ∈ 𝐷 ↦ {𝑦 ∈ 𝐵 ∣ 𝜑}) = (𝑧 ∈ 𝐷 ↦ {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑}) |
27 | 1, 26 | eqtri 2766 |
. . . . 5
⊢ 𝐹 = (𝑧 ∈ 𝐷 ↦ {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑}) |
28 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑧 ∈ 𝐷 |
29 | 9 | nfel1 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐵 ∈ 𝑉 |
30 | 28, 29 | nfim 1899 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑧 ∈ 𝐷 → ⦋𝑧 / 𝑥⦌𝐵 ∈ 𝑉) |
31 | | eleq1w 2821 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷)) |
32 | 11 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝐵 ∈ 𝑉 ↔ ⦋𝑧 / 𝑥⦌𝐵 ∈ 𝑉)) |
33 | 31, 32 | imbi12d 345 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) ↔ (𝑧 ∈ 𝐷 → ⦋𝑧 / 𝑥⦌𝐵 ∈ 𝑉))) |
34 | | elmptrab.ex |
. . . . . . 7
⊢ (𝑥 ∈ 𝐷 → 𝐵 ∈ 𝑉) |
35 | 30, 33, 34 | chvarfv 2233 |
. . . . . 6
⊢ (𝑧 ∈ 𝐷 → ⦋𝑧 / 𝑥⦌𝐵 ∈ 𝑉) |
36 | | rabexg 5255 |
. . . . . 6
⊢
(⦋𝑧 /
𝑥⦌𝐵 ∈ 𝑉 → {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑} ∈ V) |
37 | 35, 36 | syl 17 |
. . . . 5
⊢ (𝑧 ∈ 𝐷 → {𝑤 ∈ ⦋𝑧 / 𝑥⦌𝐵 ∣ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑} ∈ V) |
38 | 6, 27, 37 | fvmpt3 6879 |
. . . 4
⊢ (𝑋 ∈ 𝐷 → (𝐹‘𝑋) = {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑}) |
39 | 38 | eleq2d 2824 |
. . 3
⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ (𝐹‘𝑋) ↔ 𝑌 ∈ {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑})) |
40 | | dfsbcq 3718 |
. . . . . . 7
⊢ (𝑤 = 𝑌 → ([𝑤 / 𝑦]𝜑 ↔ [𝑌 / 𝑦]𝜑)) |
41 | 40 | sbcbidv 3775 |
. . . . . 6
⊢ (𝑤 = 𝑌 → ([𝑋 / 𝑥][𝑤 / 𝑦]𝜑 ↔ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
42 | 41 | elrab 3624 |
. . . . 5
⊢ (𝑌 ∈ {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∧ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑)) |
43 | 42 | a1i 11 |
. . . 4
⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∧ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑))) |
44 | | nfcvd 2908 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐷 → Ⅎ𝑥𝐶) |
45 | | elmptrab.s2 |
. . . . . . 7
⊢ (𝑥 = 𝑋 → 𝐵 = 𝐶) |
46 | 44, 45 | csbiegf 3866 |
. . . . . 6
⊢ (𝑋 ∈ 𝐷 → ⦋𝑋 / 𝑥⦌𝐵 = 𝐶) |
47 | 46 | eleq2d 2824 |
. . . . 5
⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐵 ↔ 𝑌 ∈ 𝐶)) |
48 | 47 | anbi1d 630 |
. . . 4
⊢ (𝑋 ∈ 𝐷 → ((𝑌 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∧ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑) ↔ (𝑌 ∈ 𝐶 ∧ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑))) |
49 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑥𝜓 |
50 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑦𝜓 |
51 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑥 𝑌 ∈ 𝐶 |
52 | | elmptrab.s1 |
. . . . . 6
⊢ ((𝑥 = 𝑋 ∧ 𝑦 = 𝑌) → (𝜑 ↔ 𝜓)) |
53 | 49, 50, 51, 52 | sbc2iegf 3798 |
. . . . 5
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶) → ([𝑋 / 𝑥][𝑌 / 𝑦]𝜑 ↔ 𝜓)) |
54 | 53 | pm5.32da 579 |
. . . 4
⊢ (𝑋 ∈ 𝐷 → ((𝑌 ∈ 𝐶 ∧ [𝑋 / 𝑥][𝑌 / 𝑦]𝜑) ↔ (𝑌 ∈ 𝐶 ∧ 𝜓))) |
55 | 43, 48, 54 | 3bitrd 305 |
. . 3
⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ {𝑤 ∈ ⦋𝑋 / 𝑥⦌𝐵 ∣ [𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌 ∈ 𝐶 ∧ 𝜓))) |
56 | | 3anass 1094 |
. . . 4
⊢ ((𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑋 ∈ 𝐷 ∧ (𝑌 ∈ 𝐶 ∧ 𝜓))) |
57 | 56 | baibr 537 |
. . 3
⊢ (𝑋 ∈ 𝐷 → ((𝑌 ∈ 𝐶 ∧ 𝜓) ↔ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓))) |
58 | 39, 55, 57 | 3bitrd 305 |
. 2
⊢ (𝑋 ∈ 𝐷 → (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓))) |
59 | 2, 3, 58 | pm5.21nii 380 |
1
⊢ (𝑌 ∈ (𝐹‘𝑋) ↔ (𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐶 ∧ 𝜓)) |