MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabaf Structured version   Visualization version   GIF version

Theorem opelopabaf 5487
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 5485 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x 𝑥𝜓
opelopabaf.y 𝑦𝜓
opelopabaf.1 𝐴 ∈ V
opelopabaf.2 𝐵 ∈ V
opelopabaf.3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
Assertion
Ref Expression
opelopabaf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 5473 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabaf.1 . . 3 𝐴 ∈ V
3 opelopabaf.2 . . 3 𝐵 ∈ V
4 opelopabaf.x . . . 4 𝑥𝜓
5 opelopabaf.y . . . 4 𝑦𝜓
6 nfv 1915 . . . 4 𝑥 𝐵 ∈ V
7 opelopabaf.3 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜓))
84, 5, 6, 7sbc2iegf 3811 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓))
92, 3, 8mp2an 692 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝜓)
101, 9bitri 275 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  Vcvv 3436  [wsbc 3736  cop 4581  {copab 5155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-opab 5156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator