| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelopabaf | Structured version Visualization version GIF version | ||
| Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 5527 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| opelopabaf.x | ⊢ Ⅎ𝑥𝜓 |
| opelopabaf.y | ⊢ Ⅎ𝑦𝜓 |
| opelopabaf.1 | ⊢ 𝐴 ∈ V |
| opelopabaf.2 | ⊢ 𝐵 ∈ V |
| opelopabaf.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| opelopabaf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopabsb 5515 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
| 2 | opelopabaf.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelopabaf.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | opelopabaf.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | opelopabaf.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 6 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V | |
| 7 | opelopabaf.3 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
| 8 | 4, 5, 6, 7 | sbc2iegf 3845 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
| 9 | 2, 3, 8 | mp2an 692 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
| 10 | 1, 9 | bitri 275 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2107 Vcvv 3463 [wsbc 3770 〈cop 4612 {copab 5185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5186 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |