![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelopabaf | Structured version Visualization version GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 5556 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
opelopabaf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabaf.y | ⊢ Ⅎ𝑦𝜓 |
opelopabaf.1 | ⊢ 𝐴 ∈ V |
opelopabaf.2 | ⊢ 𝐵 ∈ V |
opelopabaf.3 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
opelopabaf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 5544 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | opelopabaf.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | opelopabaf.2 | . . 3 ⊢ 𝐵 ∈ V | |
4 | opelopabaf.x | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | opelopabaf.y | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
6 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝐵 ∈ V | |
7 | opelopabaf.3 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) | |
8 | 4, 5, 6, 7 | sbc2iegf 3876 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓)) |
9 | 2, 3, 8 | mp2an 692 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ 𝜓) |
10 | 1, 9 | bitri 275 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 Ⅎwnf 1782 ∈ wcel 2108 Vcvv 3481 [wsbc 3794 〈cop 4640 {copab 5213 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-opab 5214 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |