Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbc8g | Structured version Visualization version GIF version |
Description: This is the closest we can get to df-sbc 3717 if we start from dfsbcq 3718 (see its comments) and dfsbcq2 3719. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc8g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3718 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | eleq1 2826 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
3 | df-clab 2716 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | equid 2015 | . . . 4 ⊢ 𝑦 = 𝑦 | |
5 | dfsbcq2 3719 | . . . 4 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
7 | 3, 6 | bitr2i 275 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
8 | 1, 2, 7 | vtoclbg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 [wsb 2067 ∈ wcel 2106 {cab 2715 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-sbc 3717 |
This theorem is referenced by: bnj984 32932 rusbcALT 42057 |
Copyright terms: Public domain | W3C validator |