![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqi | Structured version Visualization version GIF version |
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbceqi.1 | ⊢ 𝐴 ∈ V |
sbceqi.2 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 |
sbceqi.3 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 |
Ref | Expression |
---|---|
sbceqi | ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqi.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | sbceqg 4402 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | sbceqi.2 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | |
5 | sbceqi.3 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | |
6 | 4, 5 | eqeq12i 2742 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐷 = 𝐸) |
7 | 3, 6 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3466 [wsbc 3770 ⦋csb 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-sbc 3771 df-csb 3887 |
This theorem is referenced by: sbccom2lem 37496 |
Copyright terms: Public domain | W3C validator |