| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbceqi | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
| Ref | Expression |
|---|---|
| sbceqi.1 | ⊢ 𝐴 ∈ V |
| sbceqi.2 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 |
| sbceqi.3 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 |
| Ref | Expression |
|---|---|
| sbceqi | ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbceqi.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | sbceqg 4359 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
| 4 | sbceqi.2 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | |
| 5 | sbceqi.3 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | |
| 6 | 4, 5 | eqeq12i 2749 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐷 = 𝐸) |
| 7 | 3, 6 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 [wsbc 3736 ⦋csb 3845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-sbc 3737 df-csb 3846 |
| This theorem is referenced by: sbccom2lem 38172 |
| Copyright terms: Public domain | W3C validator |