Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbceqi Structured version   Visualization version   GIF version

Theorem sbceqi 34241
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypotheses
Ref Expression
sbceqi.1 𝐴 ∈ V
sbceqi.2 𝐴 / 𝑥𝐵 = 𝐷
sbceqi.3 𝐴 / 𝑥𝐶 = 𝐸
Assertion
Ref Expression
sbceqi ([𝐴 / 𝑥]𝐵 = 𝐶𝐷 = 𝐸)

Proof of Theorem sbceqi
StepHypRef Expression
1 sbceqi.1 . . 3 𝐴 ∈ V
2 sbceqg 4128 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
31, 2ax-mp 5 . 2 ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
4 sbceqi.2 . . 3 𝐴 / 𝑥𝐵 = 𝐷
5 sbceqi.3 . . 3 𝐴 / 𝑥𝐶 = 𝐸
64, 5eqeq12i 2785 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐷 = 𝐸)
73, 6bitri 264 1 ([𝐴 / 𝑥]𝐵 = 𝐶𝐷 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1631  wcel 2145  Vcvv 3351  [wsbc 3587  csb 3682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-sbc 3588  df-csb 3683
This theorem is referenced by:  sbccom2lem  34257
  Copyright terms: Public domain W3C validator