![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbceqi | Structured version Visualization version GIF version |
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
Ref | Expression |
---|---|
sbceqi.1 | ⊢ 𝐴 ∈ V |
sbceqi.2 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 |
sbceqi.3 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 |
Ref | Expression |
---|---|
sbceqi | ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbceqi.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | sbceqg 4370 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) |
4 | sbceqi.2 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | |
5 | sbceqi.3 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | |
6 | 4, 5 | eqeq12i 2751 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐷 = 𝐸) |
7 | 3, 6 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3444 [wsbc 3740 ⦋csb 3856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-sbc 3741 df-csb 3857 |
This theorem is referenced by: sbccom2lem 36629 |
Copyright terms: Public domain | W3C validator |