MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbceqi Structured version   Visualization version   GIF version

Theorem sbceqi 4403
Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.)
Hypotheses
Ref Expression
sbceqi.1 𝐴 ∈ V
sbceqi.2 𝐴 / 𝑥𝐵 = 𝐷
sbceqi.3 𝐴 / 𝑥𝐶 = 𝐸
Assertion
Ref Expression
sbceqi ([𝐴 / 𝑥]𝐵 = 𝐶𝐷 = 𝐸)

Proof of Theorem sbceqi
StepHypRef Expression
1 sbceqi.1 . . 3 𝐴 ∈ V
2 sbceqg 4402 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))
31, 2ax-mp 5 . 2 ([𝐴 / 𝑥]𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶)
4 sbceqi.2 . . 3 𝐴 / 𝑥𝐵 = 𝐷
5 sbceqi.3 . . 3 𝐴 / 𝑥𝐶 = 𝐸
64, 5eqeq12i 2742 . 2 (𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶𝐷 = 𝐸)
73, 6bitri 275 1 ([𝐴 / 𝑥]𝐵 = 𝐶𝐷 = 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wcel 2098  Vcvv 3466  [wsbc 3770  csb 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-sbc 3771  df-csb 3887
This theorem is referenced by:  sbccom2lem  37496
  Copyright terms: Public domain W3C validator