|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbceqi | Structured version Visualization version GIF version | ||
| Description: Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) | 
| Ref | Expression | 
|---|---|
| sbceqi.1 | ⊢ 𝐴 ∈ V | 
| sbceqi.2 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | 
| sbceqi.3 | ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | 
| Ref | Expression | 
|---|---|
| sbceqi | ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbceqi.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | sbceqg 4411 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶) | 
| 4 | sbceqi.2 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 | |
| 5 | sbceqi.3 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 | |
| 6 | 4, 5 | eqeq12i 2754 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝐷 = 𝐸) | 
| 7 | 3, 6 | bitri 275 | 1 ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3479 [wsbc 3787 ⦋csb 3898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-sbc 3788 df-csb 3899 | 
| This theorem is referenced by: sbccom2lem 38132 | 
| Copyright terms: Public domain | W3C validator |