MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcnel12g Structured version   Visualization version   GIF version

Theorem sbcnel12g 4394
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.)
Assertion
Ref Expression
sbcnel12g (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

Proof of Theorem sbcnel12g
StepHypRef Expression
1 sbcng 3818 . 2 (𝐴𝑉 → ([𝐴 / 𝑥] ¬ 𝐵𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶))
2 df-nel 3038 . . 3 (𝐵𝐶 ↔ ¬ 𝐵𝐶)
32sbcbii 3827 . 2 ([𝐴 / 𝑥]𝐵𝐶[𝐴 / 𝑥] ¬ 𝐵𝐶)
4 df-nel 3038 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ 𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
5 sbcel12 4391 . . 3 ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
64, 5xchbinxr 335 . 2 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵𝐶)
71, 3, 63bitr4g 314 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝐵𝐶𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wcel 2109  wnel 3037  [wsbc 3770  csb 3879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-nel 3038  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-nul 4314
This theorem is referenced by:  rusbcALT  44430
  Copyright terms: Public domain W3C validator