|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sbcnel12g | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sbcnel12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbcng 3835 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) | |
| 2 | df-nel 3046 | . . 3 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 3 | 2 | sbcbii 3845 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶) | 
| 4 | df-nel 3046 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | sbcel12 4410 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 6 | 4, 5 | xchbinxr 335 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) | 
| 7 | 1, 3, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2107 ∉ wnel 3045 [wsbc 3787 ⦋csb 3898 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-nel 3046 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-nul 4333 | 
| This theorem is referenced by: rusbcALT 44463 | 
| Copyright terms: Public domain | W3C validator |