![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbcnel12g | Structured version Visualization version GIF version |
Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
Ref | Expression |
---|---|
sbcnel12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcng 3855 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) | |
2 | df-nel 3053 | . . 3 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
3 | 2 | sbcbii 3865 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶) |
4 | df-nel 3053 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
5 | sbcel12 4434 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
6 | 4, 5 | xchbinxr 335 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) |
7 | 1, 3, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2108 ∉ wnel 3052 [wsbc 3804 ⦋csb 3921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-nel 3053 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-nul 4353 |
This theorem is referenced by: rusbcALT 44408 |
Copyright terms: Public domain | W3C validator |