| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcnel12g | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through negated membership. (Contributed by Andrew Salmon, 18-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcnel12g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcng 3818 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶)) | |
| 2 | df-nel 3038 | . . 3 ⊢ (𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶) | |
| 3 | 2 | sbcbii 3827 | . 2 ⊢ ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ [𝐴 / 𝑥] ¬ 𝐵 ∈ 𝐶) |
| 4 | df-nel 3038 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 5 | sbcel12 4391 | . . 3 ⊢ ([𝐴 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐶) | |
| 6 | 4, 5 | xchbinxr 335 | . 2 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶 ↔ ¬ [𝐴 / 𝑥]𝐵 ∈ 𝐶) |
| 7 | 1, 3, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝐵 ∉ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 ∉ ⦋𝐴 / 𝑥⦌𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2109 ∉ wnel 3037 [wsbc 3770 ⦋csb 3879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-nel 3038 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: rusbcALT 44430 |
| Copyright terms: Public domain | W3C validator |