| Step | Hyp | Ref
| Expression |
| 1 | | ralnex 3063 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ [𝑧 / 𝑥]𝜑 ↔ ¬ ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑) |
| 2 | | sbcng 3818 |
. . . . . . . 8
⊢ (𝑧 ∈ V → ([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑)) |
| 3 | 2 | elv 3469 |
. . . . . . 7
⊢
([𝑧 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑧 / 𝑥]𝜑) |
| 4 | 3 | bicomi 224 |
. . . . . 6
⊢ (¬
[𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥] ¬ 𝜑) |
| 5 | 4 | ralbii 3083 |
. . . . 5
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥] ¬ 𝜑) |
| 6 | 1, 5 | bitr3i 277 |
. . . 4
⊢ (¬
∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥] ¬ 𝜑) |
| 7 | | df-rab 3421 |
. . . . . . 7
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} |
| 8 | 7 | eleq2i 2827 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)}) |
| 9 | | df-sbc 3771 |
. . . . . . 7
⊢
([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ ¬ 𝜑) ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)}) |
| 10 | | sbcan 3820 |
. . . . . . . 8
⊢
([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ ¬ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑)) |
| 11 | | sbcel1v 3836 |
. . . . . . . . 9
⊢
([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) |
| 12 | 11 | anbi1i 624 |
. . . . . . . 8
⊢
(([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑)) |
| 13 | 10, 12 | bitri 275 |
. . . . . . 7
⊢
([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ ¬ 𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑)) |
| 14 | 9, 13 | bitr3i 277 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑)) |
| 15 | 8, 14 | bitri 275 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥] ¬ 𝜑)) |
| 16 | 15 | simprbi 496 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → [𝑧 / 𝑥] ¬ 𝜑) |
| 17 | 6, 16 | mprgbir 3059 |
. . 3
⊢ ¬
∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑 |
| 18 | | bnj110.1 |
. . . . . . . . 9
⊢ 𝐴 ∈ V |
| 19 | 18 | rabex 5314 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∈ V |
| 20 | 19 | biantrur 530 |
. . . . . . 7
⊢ (𝑅 Fr 𝐴 ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴)) |
| 21 | | rexnal 3090 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| 22 | | rabn0 4369 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 ¬ 𝜑) |
| 23 | | ssrab2 4060 |
. . . . . . . . . 10
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 |
| 24 | 23 | biantrur 530 |
. . . . . . . . 9
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅ ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅)) |
| 25 | 22, 24 | bitr3i 277 |
. . . . . . . 8
⊢
(∃𝑥 ∈
𝐴 ¬ 𝜑 ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅)) |
| 26 | 21, 25 | bitr3i 277 |
. . . . . . 7
⊢ (¬
∀𝑥 ∈ 𝐴 𝜑 ↔ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅)) |
| 27 | | fri 5616 |
. . . . . . 7
⊢ ((({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ∈ V ∧ 𝑅 Fr 𝐴) ∧ ({𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ⊆ 𝐴 ∧ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ≠ ∅)) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧) |
| 28 | 20, 26, 27 | syl2anb 598 |
. . . . . 6
⊢ ((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}∀𝑤 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧) |
| 29 | | eqid 2736 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
| 30 | 29 | bnj23 34754 |
. . . . . . 7
⊢
(∀𝑤 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑)) |
| 31 | | df-ral 3053 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑))) |
| 32 | 31 | sbcbii 3827 |
. . . . . . . . 9
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ [𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑))) |
| 33 | | sbcal 3830 |
. . . . . . . . . 10
⊢
([𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ ∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑))) |
| 34 | | sbcimg 3819 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ V → ([𝑧 / 𝑥](𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ ([𝑧 / 𝑥]𝑦 ∈ 𝐴 → [𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)))) |
| 35 | 34 | elv 3469 |
. . . . . . . . . . . 12
⊢
([𝑧 / 𝑥](𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ ([𝑧 / 𝑥]𝑦 ∈ 𝐴 → [𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑))) |
| 36 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
| 37 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 38 | 36, 37 | sbcgfi 3844 |
. . . . . . . . . . . . 13
⊢
([𝑧 / 𝑥]𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 39 | | sbcimg 3819 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ V → ([𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑦𝑅𝑥 → [𝑧 / 𝑥][𝑦 / 𝑥]𝜑))) |
| 40 | 39 | elv 3469 |
. . . . . . . . . . . . . 14
⊢
([𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑦𝑅𝑥 → [𝑧 / 𝑥][𝑦 / 𝑥]𝜑)) |
| 41 | | sbcbr2g 5182 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ V → ([𝑧 / 𝑥]𝑦𝑅𝑥 ↔ 𝑦𝑅⦋𝑧 / 𝑥⦌𝑥)) |
| 42 | 41 | elv 3469 |
. . . . . . . . . . . . . . . 16
⊢
([𝑧 / 𝑥]𝑦𝑅𝑥 ↔ 𝑦𝑅⦋𝑧 / 𝑥⦌𝑥) |
| 43 | 36 | csbvargi 4415 |
. . . . . . . . . . . . . . . . 17
⊢
⦋𝑧 /
𝑥⦌𝑥 = 𝑧 |
| 44 | 43 | breq2i 5132 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦𝑅⦋𝑧 / 𝑥⦌𝑥 ↔ 𝑦𝑅𝑧) |
| 45 | 42, 44 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢
([𝑧 / 𝑥]𝑦𝑅𝑥 ↔ 𝑦𝑅𝑧) |
| 46 | | nfsbc1v 3790 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 47 | 36, 46 | sbcgfi 3844 |
. . . . . . . . . . . . . . 15
⊢
([𝑧 / 𝑥][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 48 | 45, 47 | imbi12i 350 |
. . . . . . . . . . . . . 14
⊢
(([𝑧 / 𝑥]𝑦𝑅𝑥 → [𝑧 / 𝑥][𝑦 / 𝑥]𝜑) ↔ (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑)) |
| 49 | 40, 48 | bitri 275 |
. . . . . . . . . . . . 13
⊢
([𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑)) |
| 50 | 38, 49 | imbi12i 350 |
. . . . . . . . . . . 12
⊢
(([𝑧 / 𝑥]𝑦 ∈ 𝐴 → [𝑧 / 𝑥](𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ (𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 51 | 35, 50 | bitri 275 |
. . . . . . . . . . 11
⊢
([𝑧 / 𝑥](𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ (𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 52 | 51 | albii 1819 |
. . . . . . . . . 10
⊢
(∀𝑦[𝑧 / 𝑥](𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 53 | 33, 52 | bitri 275 |
. . . . . . . . 9
⊢
([𝑧 / 𝑥]∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 54 | 32, 53 | bitri 275 |
. . . . . . . 8
⊢
([𝑧 / 𝑥]∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 55 | | bnj110.2 |
. . . . . . . . 9
⊢ (𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) |
| 56 | 55 | sbcbii 3827 |
. . . . . . . 8
⊢
([𝑧 / 𝑥]𝜓 ↔ [𝑧 / 𝑥]∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → [𝑦 / 𝑥]𝜑)) |
| 57 | | df-ral 3053 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝐴 (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑))) |
| 58 | 54, 56, 57 | 3bitr4i 303 |
. . . . . . 7
⊢
([𝑧 / 𝑥]𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑧 → [𝑦 / 𝑥]𝜑)) |
| 59 | 30, 58 | sylibr 234 |
. . . . . 6
⊢
(∀𝑤 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ¬ 𝑤𝑅𝑧 → [𝑧 / 𝑥]𝜓) |
| 60 | 28, 59 | bnj31 34755 |
. . . . 5
⊢ ((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓) |
| 61 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑧(𝜓 → 𝜑) |
| 62 | | nfsbc1v 3790 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜓 |
| 63 | | nfsbc1v 3790 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑧 / 𝑥]𝜑 |
| 64 | 62, 63 | nfim 1896 |
. . . . . . . 8
⊢
Ⅎ𝑥([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑) |
| 65 | | sbceq1a 3781 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜓 ↔ [𝑧 / 𝑥]𝜓)) |
| 66 | | sbceq1a 3781 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
| 67 | 65, 66 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → ((𝜓 → 𝜑) ↔ ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑))) |
| 68 | 61, 64, 67 | cbvralw 3290 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐴 (𝜓 → 𝜑) ↔ ∀𝑧 ∈ 𝐴 ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑)) |
| 69 | | elrabi 3671 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → 𝑧 ∈ 𝐴) |
| 70 | 69 | imim1i 63 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐴 → ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑)) → (𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} → ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑))) |
| 71 | 70 | ralimi2 3069 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝐴 ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑) → ∀𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑)) |
| 72 | 68, 71 | sylbi 217 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜓 → 𝜑) → ∀𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑)) |
| 73 | | rexim 3078 |
. . . . . 6
⊢
(∀𝑧 ∈
{𝑥 ∈ 𝐴 ∣ ¬ 𝜑} ([𝑧 / 𝑥]𝜓 → [𝑧 / 𝑥]𝜑) → (∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓 → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑)) |
| 74 | 72, 73 | syl 17 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝜓 → 𝜑) → (∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜓 → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑)) |
| 75 | 60, 74 | mpan9 506 |
. . . 4
⊢ (((𝑅 Fr 𝐴 ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑) ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑) |
| 76 | 75 | an32s 652 |
. . 3
⊢ (((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑) → ∃𝑧 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}[𝑧 / 𝑥]𝜑) |
| 77 | 17, 76 | mto 197 |
. 2
⊢ ¬
((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑) |
| 78 | | iman 401 |
. 2
⊢ (((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) ↔ ¬ ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) ∧ ¬ ∀𝑥 ∈ 𝐴 𝜑)) |
| 79 | 77, 78 | mpbir 231 |
1
⊢ ((𝑅 Fr 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) → ∀𝑥 ∈ 𝐴 𝜑) |