MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccom Structured version   Visualization version   GIF version

Theorem sbccom 3800
Description: Commutative law for double class substitution. (Contributed by NM, 15-Nov-2005.) (Proof shortened by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccom ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem sbccom
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbccomlem 3799 . . . 4 ([𝐴 / 𝑧][𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
2 sbccomlem 3799 . . . . . . 7 ([𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
32sbcbii 3772 . . . . . 6 ([𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑)
4 sbccomlem 3799 . . . . . 6 ([𝐵 / 𝑤][𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
53, 4bitri 274 . . . . 5 ([𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
65sbcbii 3772 . . . 4 ([𝐴 / 𝑧][𝐵 / 𝑤][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
7 sbccomlem 3799 . . . . 5 ([𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
87sbcbii 3772 . . . 4 ([𝐵 / 𝑤][𝐴 / 𝑧][𝑤 / 𝑦][𝑧 / 𝑥]𝜑[𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
91, 6, 83bitr3i 300 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
10 sbccow 3734 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑)
11 sbccow 3734 . . 3 ([𝐵 / 𝑤][𝑤 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
129, 10, 113bitr3i 300 . 2 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑)
13 sbccow 3734 . . 3 ([𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
1413sbcbii 3772 . 2 ([𝐴 / 𝑥][𝐵 / 𝑤][𝑤 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
15 sbccow 3734 . . 3 ([𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
1615sbcbii 3772 . 2 ([𝐵 / 𝑦][𝐴 / 𝑧][𝑧 / 𝑥]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
1712, 14, 163bitr3i 300 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  [wsbc 3711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-sbc 3712
This theorem is referenced by:  csbcom  4348  csbab  4368  mpoxopovel  8007  fi1uzind  14139  wrd2ind  14364  elmptrab  22886  rspc2daf  30717  sbccom2  36210  sbcrot3  40529  ichnreuop  44812  ichreuopeq  44813
  Copyright terms: Public domain W3C validator