Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3rexfrabdioph Structured version   Visualization version   GIF version

Theorem 3rexfrabdioph 42820
Description: Diophantine set builder for existential quantifier, explicit substitution, two variables. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
rexfrabdioph.1 𝑀 = (𝑁 + 1)
rexfrabdioph.2 𝐿 = (𝑀 + 1)
rexfrabdioph.3 𝐾 = (𝐿 + 1)
Assertion
Ref Expression
3rexfrabdioph ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Distinct variable groups:   𝑢,𝑡,𝑣,𝑤,𝑥,𝐾   𝑡,𝐿,𝑢,𝑣,𝑤,𝑥   𝑡,𝑀,𝑢,𝑣,𝑤,𝑥   𝑡,𝑁,𝑢,𝑣,𝑤,𝑥   𝜑,𝑡
Allowed substitution hints:   𝜑(𝑥,𝑤,𝑣,𝑢)

Proof of Theorem 3rexfrabdioph
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 sbc2rex 42810 . . . . . 6 ([(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
21sbcbii 3822 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑)
3 sbc2rex 42810 . . . . 5 ([(𝑎 ↾ (1...𝑁)) / 𝑢]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
42, 3bitri 275 . . . 4 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑 ↔ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
54rabbii 3421 . . 3 {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} = {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑}
6 rexfrabdioph.1 . . . . . . 7 𝑀 = (𝑁 + 1)
7 nn0p1nn 12540 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
86, 7eqeltrid 2838 . . . . . 6 (𝑁 ∈ ℕ0𝑀 ∈ ℕ)
98nnnn0d 12562 . . . . 5 (𝑁 ∈ ℕ0𝑀 ∈ ℕ0)
109adantr 480 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → 𝑀 ∈ ℕ0)
11 sbcrot3 42814 . . . . . . . . . . 11 ([(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
1211sbcbii 3822 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑)
13 sbcrot3 42814 . . . . . . . . . 10 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎𝑀) / 𝑣]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1412, 13bitri 275 . . . . . . . . 9 ([(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
1514sbcbii 3822 . . . . . . . 8 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑)
16 reseq1 5960 . . . . . . . . . 10 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)))
1716sbccomieg 42816 . . . . . . . . 9 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
18 fzssp1 13584 . . . . . . . . . . . 12 (1...𝑁) ⊆ (1...(𝑁 + 1))
196oveq2i 7416 . . . . . . . . . . . 12 (1...𝑀) = (1...(𝑁 + 1))
2018, 19sseqtrri 4008 . . . . . . . . . . 11 (1...𝑁) ⊆ (1...𝑀)
21 resabs1 5993 . . . . . . . . . . 11 ((1...𝑁) ⊆ (1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)))
22 dfsbcq 3767 . . . . . . . . . . 11 (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2320, 21, 22mp2b 10 . . . . . . . . . 10 ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
24 vex 3463 . . . . . . . . . . . . . 14 𝑡 ∈ V
2524resex 6016 . . . . . . . . . . . . 13 (𝑡 ↾ (1...𝑀)) ∈ V
26 fveq1 6875 . . . . . . . . . . . . . 14 (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀))
2726sbcco3gw 4400 . . . . . . . . . . . . 13 ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
2825, 27ax-mp 5 . . . . . . . . . . . 12 ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑)
29 elfz1end 13571 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀))
308, 29sylib 218 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑀 ∈ (1...𝑀))
31 fvres 6895 . . . . . . . . . . . . 13 (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀))
32 dfsbcq 3767 . . . . . . . . . . . . 13 (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3330, 31, 323syl 18 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3428, 33bitrid 283 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3534sbcbidv 3821 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3623, 35bitrid 283 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3717, 36bitrid 283 . . . . . . . 8 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3815, 37bitr3id 285 . . . . . . 7 (𝑁 ∈ ℕ0 → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑[(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑))
3938rabbidv 3423 . . . . . 6 (𝑁 ∈ ℕ0 → {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} = {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑})
4039eleq1d 2819 . . . . 5 (𝑁 ∈ ℕ0 → ({𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾) ↔ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)))
4140biimpar 477 . . . 4 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾))
42 rexfrabdioph.2 . . . . 5 𝐿 = (𝑀 + 1)
43 rexfrabdioph.3 . . . . 5 𝐾 = (𝐿 + 1)
4442, 432rexfrabdioph 42819 . . . 4 ((𝑀 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
4510, 41, 44syl2anc 584 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ ∃𝑤 ∈ ℕ0𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀))
465, 45eqeltrid 2838 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀))
476rexfrabdioph 42818 . 2 ((𝑁 ∈ ℕ0 ∧ {𝑎 ∈ (ℕ0m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎𝑀) / 𝑣]𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
4846, 47syldan 591 1 ((𝑁 ∈ ℕ0 ∧ {𝑡 ∈ (ℕ0m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡𝑀) / 𝑣][(𝑡𝐿) / 𝑤][(𝑡𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑣 ∈ ℕ0𝑤 ∈ ℕ0𝑥 ∈ ℕ0 𝜑} ∈ (Dioph‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  Vcvv 3459  [wsbc 3765  wss 3926  cres 5656  cfv 6531  (class class class)co 7405  m cmap 8840  1c1 11130   + caddc 11132  cn 12240  0cn0 12501  ...cfz 13524  Diophcdioph 42778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-hash 14349  df-mzpcl 42746  df-mzp 42747  df-dioph 42779
This theorem is referenced by:  expdiophlem2  43046
  Copyright terms: Public domain W3C validator