Step | Hyp | Ref
| Expression |
1 | | sbc2rex 40525 |
. . . . . 6
⊢
([(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑 ↔ ∃𝑤 ∈ ℕ0
∃𝑥 ∈
ℕ0 [(𝑎‘𝑀) / 𝑣]𝜑) |
2 | 1 | sbcbii 3772 |
. . . . 5
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
[(𝑎‘𝑀) / 𝑣]𝜑) |
3 | | sbc2rex 40525 |
. . . . 5
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢]∃𝑤 ∈ ℕ0
∃𝑥 ∈
ℕ0 [(𝑎‘𝑀) / 𝑣]𝜑 ↔ ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
[(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
4 | 2, 3 | bitri 274 |
. . . 4
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑 ↔ ∃𝑤 ∈ ℕ0
∃𝑥 ∈
ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
5 | 4 | rabbii 3397 |
. . 3
⊢ {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑} = {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 ∃𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} |
6 | | rexfrabdioph.1 |
. . . . . . 7
⊢ 𝑀 = (𝑁 + 1) |
7 | | nn0p1nn 12202 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ) |
8 | 6, 7 | eqeltrid 2843 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ) |
9 | 8 | nnnn0d 12223 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈
ℕ0) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → 𝑀 ∈
ℕ0) |
11 | | sbcrot3 40529 |
. . . . . . . . . . 11
⊢
([(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎‘𝑀) / 𝑣]𝜑) |
12 | 11 | sbcbii 3772 |
. . . . . . . . . 10
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎‘𝑀) / 𝑣]𝜑) |
13 | | sbcrot3 40529 |
. . . . . . . . . 10
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎‘𝑀) / 𝑣]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
14 | 12, 13 | bitri 274 |
. . . . . . . . 9
⊢
([(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
15 | 14 | sbcbii 3772 |
. . . . . . . 8
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑) |
16 | | reseq1 5874 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎 ↾ (1...𝑁)) = ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁))) |
17 | 16 | sbccomieg 40531 |
. . . . . . . . 9
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑) |
18 | | fzssp1 13228 |
. . . . . . . . . . . 12
⊢
(1...𝑁) ⊆
(1...(𝑁 +
1)) |
19 | 6 | oveq2i 7266 |
. . . . . . . . . . . 12
⊢
(1...𝑀) =
(1...(𝑁 +
1)) |
20 | 18, 19 | sseqtrri 3954 |
. . . . . . . . . . 11
⊢
(1...𝑁) ⊆
(1...𝑀) |
21 | | resabs1 5910 |
. . . . . . . . . . 11
⊢
((1...𝑁) ⊆
(1...𝑀) → ((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁))) |
22 | | dfsbcq 3713 |
. . . . . . . . . . 11
⊢ (((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) = (𝑡 ↾ (1...𝑁)) → ([((𝑡 ↾ (1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
23 | 20, 21, 22 | mp2b 10 |
. . . . . . . . . 10
⊢
([((𝑡 ↾
(1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑) |
24 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑡 ∈ V |
25 | 24 | resex 5928 |
. . . . . . . . . . . . 13
⊢ (𝑡 ↾ (1...𝑀)) ∈ V |
26 | | fveq1 6755 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑡 ↾ (1...𝑀)) → (𝑎‘𝑀) = ((𝑡 ↾ (1...𝑀))‘𝑀)) |
27 | 26 | sbcco3gw 4353 |
. . . . . . . . . . . . 13
⊢ ((𝑡 ↾ (1...𝑀)) ∈ V → ([(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
28 | 25, 27 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑) |
29 | | elfz1end 13215 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈ (1...𝑀)) |
30 | 8, 29 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑀 ∈ (1...𝑀)) |
31 | | fvres 6775 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (1...𝑀) → ((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡‘𝑀)) |
32 | | dfsbcq 3713 |
. . . . . . . . . . . . 13
⊢ (((𝑡 ↾ (1...𝑀))‘𝑀) = (𝑡‘𝑀) → ([((𝑡 ↾ (1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
33 | 30, 31, 32 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝑀))‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
34 | 28, 33 | syl5bb 282 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
35 | 34 | sbcbidv 3770 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
36 | 23, 35 | syl5bb 282 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ([((𝑡 ↾
(1...𝑀)) ↾ (1...𝑁)) / 𝑢][(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
37 | 17, 36 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
38 | 15, 37 | bitr3id 284 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ0
→ ([(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑 ↔ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑)) |
39 | 38 | rabbidv 3404 |
. . . . . 6
⊢ (𝑁 ∈ ℕ0
→ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} = {𝑡 ∈ (ℕ0
↑m (1...𝐾))
∣ [(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑}) |
40 | 39 | eleq1d 2823 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ ({𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾) ↔ {𝑡 ∈ (ℕ0
↑m (1...𝐾))
∣ [(𝑡 ↾
(1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾))) |
41 | 40 | biimpar 477 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑡 ∈ (ℕ0
↑m (1...𝐾))
∣ [(𝑡 ↾
(1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾)) |
42 | | rexfrabdioph.2 |
. . . . 5
⊢ 𝐿 = (𝑀 + 1) |
43 | | rexfrabdioph.3 |
. . . . 5
⊢ 𝐾 = (𝐿 + 1) |
44 | 42, 43 | 2rexfrabdioph 40534 |
. . . 4
⊢ ((𝑀 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑀)) / 𝑎][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥][(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 ∃𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) |
45 | 10, 41, 44 | syl2anc 583 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ ∃𝑤 ∈
ℕ0 ∃𝑥 ∈ ℕ0 [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]𝜑} ∈ (Dioph‘𝑀)) |
46 | 5, 45 | eqeltrid 2843 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑎 ∈ (ℕ0
↑m (1...𝑀))
∣ [(𝑎 ↾
(1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑} ∈ (Dioph‘𝑀)) |
47 | 6 | rexfrabdioph 40533 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ {𝑎 ∈
(ℕ0 ↑m (1...𝑀)) ∣ [(𝑎 ↾ (1...𝑁)) / 𝑢][(𝑎‘𝑀) / 𝑣]∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑} ∈ (Dioph‘𝑀)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑} ∈ (Dioph‘𝑁)) |
48 | 46, 47 | syldan 590 |
1
⊢ ((𝑁 ∈ ℕ0
∧ {𝑡 ∈
(ℕ0 ↑m (1...𝐾)) ∣ [(𝑡 ↾ (1...𝑁)) / 𝑢][(𝑡‘𝑀) / 𝑣][(𝑡‘𝐿) / 𝑤][(𝑡‘𝐾) / 𝑥]𝜑} ∈ (Dioph‘𝐾)) → {𝑢 ∈ (ℕ0
↑m (1...𝑁))
∣ ∃𝑣 ∈
ℕ0 ∃𝑤 ∈ ℕ0 ∃𝑥 ∈ ℕ0
𝜑} ∈ (Dioph‘𝑁)) |