Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq2 | Structured version Visualization version GIF version |
Description: Equality theorem for unordered pairs. (Contributed by NM, 15-Jul-1993.) |
Ref | Expression |
---|---|
preq2 | ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4666 | . 2 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐶} = {𝐵, 𝐶}) | |
2 | prcom 4665 | . 2 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
3 | prcom 4665 | . 2 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
4 | 1, 2, 3 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → {𝐶, 𝐴} = {𝐶, 𝐵}) |
Copyright terms: Public domain | W3C validator |