MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sels Structured version   Visualization version   GIF version

Theorem sels 5351
Description: If a class is a set, then it is a member of a set. (Contributed by BJ, 3-Apr-2019.)
Assertion
Ref Expression
sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sels
StepHypRef Expression
1 snidg 4592 . 2 (𝐴𝑉𝐴 ∈ {𝐴})
2 snex 5349 . . 3 {𝐴} ∈ V
3 eleq2 2827 . . 3 (𝑥 = {𝐴} → (𝐴𝑥𝐴 ∈ {𝐴}))
42, 3spcev 3535 . 2 (𝐴 ∈ {𝐴} → ∃𝑥 𝐴𝑥)
51, 4syl 17 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1783  wcel 2108  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  sat1el2xp  33241
  Copyright terms: Public domain W3C validator