| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sels | Structured version Visualization version GIF version | ||
| Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5378. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5229, ax-nul 5239, ax-pow 5298. (Revised by BTernaryTau, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2819 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 2 | 1 | exbidv 1922 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝐴 ∈ 𝑥)) |
| 3 | el 5375 | . 2 ⊢ ∃𝑥 𝑦 ∈ 𝑥 | |
| 4 | 2, 3 | vtoclg 3507 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: sat1el2xp 35415 |
| Copyright terms: Public domain | W3C validator |