| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sels | Structured version Visualization version GIF version | ||
| Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5420. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5271, ax-nul 5281, ax-pow 5340. (Revised by BTernaryTau, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| sels | ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2823 | . . 3 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 ∈ 𝑥 ↔ ∃𝑥 𝐴 ∈ 𝑥)) |
| 3 | el 5417 | . 2 ⊢ ∃𝑥 𝑦 ∈ 𝑥 | |
| 4 | 2, 3 | vtoclg 3538 | 1 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 |
| This theorem is referenced by: sat1el2xp 35406 |
| Copyright terms: Public domain | W3C validator |