MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sels Structured version   Visualization version   GIF version

Theorem sels 5458
Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5460. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5317, ax-nul 5324, ax-pow 5383. (Revised by BTernaryTau, 15-Jan-2025.)
Assertion
Ref Expression
sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sels
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2832 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21exbidv 1920 . 2 (𝑦 = 𝐴 → (∃𝑥 𝑦𝑥 ↔ ∃𝑥 𝐴𝑥))
3 el 5457 . 2 𝑥 𝑦𝑥
42, 3vtoclg 3566 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1777  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819
This theorem is referenced by:  sat1el2xp  35347
  Copyright terms: Public domain W3C validator