MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sels Structured version   Visualization version   GIF version

Theorem sels 5418
Description: If a class is a set, then it is a member of a set. (Contributed by NM, 4-Jan-2002.) Generalize from the proof of elALT 5420. (Revised by BJ, 3-Apr-2019.) Avoid ax-sep 5271, ax-nul 5281, ax-pow 5340. (Revised by BTernaryTau, 15-Jan-2025.)
Assertion
Ref Expression
sels (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem sels
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2823 . . 3 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
21exbidv 1921 . 2 (𝑦 = 𝐴 → (∃𝑥 𝑦𝑥 ↔ ∃𝑥 𝐴𝑥))
3 el 5417 . 2 𝑥 𝑦𝑥
42, 3vtoclg 3538 1 (𝐴𝑉 → ∃𝑥 𝐴𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810
This theorem is referenced by:  sat1el2xp  35406
  Copyright terms: Public domain W3C validator